Evaluate
\frac{480}{17}\approx 28.235294118
Factor
\frac{2 ^ {5} \cdot 3 \cdot 5}{17} = 28\frac{4}{17} = 28.235294117647058
Share
Copied to clipboard
\begin{array}{l}\phantom{17)}\phantom{1}\\17\overline{)480}\\\end{array}
Use the 1^{st} digit 4 from dividend 480
\begin{array}{l}\phantom{17)}0\phantom{2}\\17\overline{)480}\\\end{array}
Since 4 is less than 17, use the next digit 8 from dividend 480 and add 0 to the quotient
\begin{array}{l}\phantom{17)}0\phantom{3}\\17\overline{)480}\\\end{array}
Use the 2^{nd} digit 8 from dividend 480
\begin{array}{l}\phantom{17)}02\phantom{4}\\17\overline{)480}\\\phantom{17)}\underline{\phantom{}34\phantom{9}}\\\phantom{17)}14\\\end{array}
Find closest multiple of 17 to 48. We see that 2 \times 17 = 34 is the nearest. Now subtract 34 from 48 to get reminder 14. Add 2 to quotient.
\begin{array}{l}\phantom{17)}02\phantom{5}\\17\overline{)480}\\\phantom{17)}\underline{\phantom{}34\phantom{9}}\\\phantom{17)}140\\\end{array}
Use the 3^{rd} digit 0 from dividend 480
\begin{array}{l}\phantom{17)}028\phantom{6}\\17\overline{)480}\\\phantom{17)}\underline{\phantom{}34\phantom{9}}\\\phantom{17)}140\\\phantom{17)}\underline{\phantom{}136\phantom{}}\\\phantom{17)99}4\\\end{array}
Find closest multiple of 17 to 140. We see that 8 \times 17 = 136 is the nearest. Now subtract 136 from 140 to get reminder 4. Add 8 to quotient.
\text{Quotient: }28 \text{Reminder: }4
Since 4 is less than 17, stop the division. The reminder is 4. The topmost line 028 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 28.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}