Evaluate
8
Factor
2^{3}
Share
Copied to clipboard
\begin{array}{l}\phantom{60)}\phantom{1}\\60\overline{)480}\\\end{array}
Use the 1^{st} digit 4 from dividend 480
\begin{array}{l}\phantom{60)}0\phantom{2}\\60\overline{)480}\\\end{array}
Since 4 is less than 60, use the next digit 8 from dividend 480 and add 0 to the quotient
\begin{array}{l}\phantom{60)}0\phantom{3}\\60\overline{)480}\\\end{array}
Use the 2^{nd} digit 8 from dividend 480
\begin{array}{l}\phantom{60)}00\phantom{4}\\60\overline{)480}\\\end{array}
Since 48 is less than 60, use the next digit 0 from dividend 480 and add 0 to the quotient
\begin{array}{l}\phantom{60)}00\phantom{5}\\60\overline{)480}\\\end{array}
Use the 3^{rd} digit 0 from dividend 480
\begin{array}{l}\phantom{60)}008\phantom{6}\\60\overline{)480}\\\phantom{60)}\underline{\phantom{}480\phantom{}}\\\phantom{60)999}0\\\end{array}
Find closest multiple of 60 to 480. We see that 8 \times 60 = 480 is the nearest. Now subtract 480 from 480 to get reminder 0. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }0
Since 0 is less than 60, stop the division. The reminder is 0. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}