Evaluate
\frac{240}{11}\approx 21.818181818
Factor
\frac{2 ^ {4} \cdot 3 \cdot 5}{11} = 21\frac{9}{11} = 21.818181818181817
Share
Copied to clipboard
\begin{array}{l}\phantom{22)}\phantom{1}\\22\overline{)480}\\\end{array}
Use the 1^{st} digit 4 from dividend 480
\begin{array}{l}\phantom{22)}0\phantom{2}\\22\overline{)480}\\\end{array}
Since 4 is less than 22, use the next digit 8 from dividend 480 and add 0 to the quotient
\begin{array}{l}\phantom{22)}0\phantom{3}\\22\overline{)480}\\\end{array}
Use the 2^{nd} digit 8 from dividend 480
\begin{array}{l}\phantom{22)}02\phantom{4}\\22\overline{)480}\\\phantom{22)}\underline{\phantom{}44\phantom{9}}\\\phantom{22)9}4\\\end{array}
Find closest multiple of 22 to 48. We see that 2 \times 22 = 44 is the nearest. Now subtract 44 from 48 to get reminder 4. Add 2 to quotient.
\begin{array}{l}\phantom{22)}02\phantom{5}\\22\overline{)480}\\\phantom{22)}\underline{\phantom{}44\phantom{9}}\\\phantom{22)9}40\\\end{array}
Use the 3^{rd} digit 0 from dividend 480
\begin{array}{l}\phantom{22)}021\phantom{6}\\22\overline{)480}\\\phantom{22)}\underline{\phantom{}44\phantom{9}}\\\phantom{22)9}40\\\phantom{22)}\underline{\phantom{9}22\phantom{}}\\\phantom{22)9}18\\\end{array}
Find closest multiple of 22 to 40. We see that 1 \times 22 = 22 is the nearest. Now subtract 22 from 40 to get reminder 18. Add 1 to quotient.
\text{Quotient: }21 \text{Reminder: }18
Since 18 is less than 22, stop the division. The reminder is 18. The topmost line 021 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}