Solve for x
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
x = \frac{5}{4} = 1\frac{1}{4} = 1.25
Graph
Share
Copied to clipboard
8x^{2}+2x-15=0
Divide both sides by 6.
a+b=2 ab=8\left(-15\right)=-120
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 8x^{2}+ax+bx-15. To find a and b, set up a system to be solved.
-1,120 -2,60 -3,40 -4,30 -5,24 -6,20 -8,15 -10,12
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -120.
-1+120=119 -2+60=58 -3+40=37 -4+30=26 -5+24=19 -6+20=14 -8+15=7 -10+12=2
Calculate the sum for each pair.
a=-10 b=12
The solution is the pair that gives sum 2.
\left(8x^{2}-10x\right)+\left(12x-15\right)
Rewrite 8x^{2}+2x-15 as \left(8x^{2}-10x\right)+\left(12x-15\right).
2x\left(4x-5\right)+3\left(4x-5\right)
Factor out 2x in the first and 3 in the second group.
\left(4x-5\right)\left(2x+3\right)
Factor out common term 4x-5 by using distributive property.
x=\frac{5}{4} x=-\frac{3}{2}
To find equation solutions, solve 4x-5=0 and 2x+3=0.
48x^{2}+12x-90=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{12^{2}-4\times 48\left(-90\right)}}{2\times 48}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 48 for a, 12 for b, and -90 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 48\left(-90\right)}}{2\times 48}
Square 12.
x=\frac{-12±\sqrt{144-192\left(-90\right)}}{2\times 48}
Multiply -4 times 48.
x=\frac{-12±\sqrt{144+17280}}{2\times 48}
Multiply -192 times -90.
x=\frac{-12±\sqrt{17424}}{2\times 48}
Add 144 to 17280.
x=\frac{-12±132}{2\times 48}
Take the square root of 17424.
x=\frac{-12±132}{96}
Multiply 2 times 48.
x=\frac{120}{96}
Now solve the equation x=\frac{-12±132}{96} when ± is plus. Add -12 to 132.
x=\frac{5}{4}
Reduce the fraction \frac{120}{96} to lowest terms by extracting and canceling out 24.
x=-\frac{144}{96}
Now solve the equation x=\frac{-12±132}{96} when ± is minus. Subtract 132 from -12.
x=-\frac{3}{2}
Reduce the fraction \frac{-144}{96} to lowest terms by extracting and canceling out 48.
x=\frac{5}{4} x=-\frac{3}{2}
The equation is now solved.
48x^{2}+12x-90=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
48x^{2}+12x-90-\left(-90\right)=-\left(-90\right)
Add 90 to both sides of the equation.
48x^{2}+12x=-\left(-90\right)
Subtracting -90 from itself leaves 0.
48x^{2}+12x=90
Subtract -90 from 0.
\frac{48x^{2}+12x}{48}=\frac{90}{48}
Divide both sides by 48.
x^{2}+\frac{12}{48}x=\frac{90}{48}
Dividing by 48 undoes the multiplication by 48.
x^{2}+\frac{1}{4}x=\frac{90}{48}
Reduce the fraction \frac{12}{48} to lowest terms by extracting and canceling out 12.
x^{2}+\frac{1}{4}x=\frac{15}{8}
Reduce the fraction \frac{90}{48} to lowest terms by extracting and canceling out 6.
x^{2}+\frac{1}{4}x+\left(\frac{1}{8}\right)^{2}=\frac{15}{8}+\left(\frac{1}{8}\right)^{2}
Divide \frac{1}{4}, the coefficient of the x term, by 2 to get \frac{1}{8}. Then add the square of \frac{1}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{15}{8}+\frac{1}{64}
Square \frac{1}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{121}{64}
Add \frac{15}{8} to \frac{1}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{8}\right)^{2}=\frac{121}{64}
Factor x^{2}+\frac{1}{4}x+\frac{1}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{8}\right)^{2}}=\sqrt{\frac{121}{64}}
Take the square root of both sides of the equation.
x+\frac{1}{8}=\frac{11}{8} x+\frac{1}{8}=-\frac{11}{8}
Simplify.
x=\frac{5}{4} x=-\frac{3}{2}
Subtract \frac{1}{8} from both sides of the equation.
x ^ 2 +\frac{1}{4}x -\frac{15}{8} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 48
r + s = -\frac{1}{4} rs = -\frac{15}{8}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{1}{8} - u s = -\frac{1}{8} + u
Two numbers r and s sum up to -\frac{1}{4} exactly when the average of the two numbers is \frac{1}{2}*-\frac{1}{4} = -\frac{1}{8}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{1}{8} - u) (-\frac{1}{8} + u) = -\frac{15}{8}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{15}{8}
\frac{1}{64} - u^2 = -\frac{15}{8}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{15}{8}-\frac{1}{64} = -\frac{121}{64}
Simplify the expression by subtracting \frac{1}{64} on both sides
u^2 = \frac{121}{64} u = \pm\sqrt{\frac{121}{64}} = \pm \frac{11}{8}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{1}{8} - \frac{11}{8} = -1.500 s = -\frac{1}{8} + \frac{11}{8} = 1.250
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}