Factor
12t\left(4-t\right)
Evaluate
12t\left(4-t\right)
Share
Copied to clipboard
12\left(4t-t^{2}\right)
Factor out 12.
t\left(4-t\right)
Consider 4t-t^{2}. Factor out t.
12t\left(-t+4\right)
Rewrite the complete factored expression.
-12t^{2}+48t=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-48±\sqrt{48^{2}}}{2\left(-12\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-48±48}{2\left(-12\right)}
Take the square root of 48^{2}.
t=\frac{-48±48}{-24}
Multiply 2 times -12.
t=\frac{0}{-24}
Now solve the equation t=\frac{-48±48}{-24} when ± is plus. Add -48 to 48.
t=0
Divide 0 by -24.
t=-\frac{96}{-24}
Now solve the equation t=\frac{-48±48}{-24} when ± is minus. Subtract 48 from -48.
t=4
Divide -96 by -24.
-12t^{2}+48t=-12t\left(t-4\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and 4 for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}