Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=8 ab=48\left(-1\right)=-48
Factor the expression by grouping. First, the expression needs to be rewritten as 48x^{2}+ax+bx-1. To find a and b, set up a system to be solved.
-1,48 -2,24 -3,16 -4,12 -6,8
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -48.
-1+48=47 -2+24=22 -3+16=13 -4+12=8 -6+8=2
Calculate the sum for each pair.
a=-4 b=12
The solution is the pair that gives sum 8.
\left(48x^{2}-4x\right)+\left(12x-1\right)
Rewrite 48x^{2}+8x-1 as \left(48x^{2}-4x\right)+\left(12x-1\right).
4x\left(12x-1\right)+12x-1
Factor out 4x in 48x^{2}-4x.
\left(12x-1\right)\left(4x+1\right)
Factor out common term 12x-1 by using distributive property.
48x^{2}+8x-1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}-4\times 48\left(-1\right)}}{2\times 48}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{64-4\times 48\left(-1\right)}}{2\times 48}
Square 8.
x=\frac{-8±\sqrt{64-192\left(-1\right)}}{2\times 48}
Multiply -4 times 48.
x=\frac{-8±\sqrt{64+192}}{2\times 48}
Multiply -192 times -1.
x=\frac{-8±\sqrt{256}}{2\times 48}
Add 64 to 192.
x=\frac{-8±16}{2\times 48}
Take the square root of 256.
x=\frac{-8±16}{96}
Multiply 2 times 48.
x=\frac{8}{96}
Now solve the equation x=\frac{-8±16}{96} when ± is plus. Add -8 to 16.
x=\frac{1}{12}
Reduce the fraction \frac{8}{96} to lowest terms by extracting and canceling out 8.
x=-\frac{24}{96}
Now solve the equation x=\frac{-8±16}{96} when ± is minus. Subtract 16 from -8.
x=-\frac{1}{4}
Reduce the fraction \frac{-24}{96} to lowest terms by extracting and canceling out 24.
48x^{2}+8x-1=48\left(x-\frac{1}{12}\right)\left(x-\left(-\frac{1}{4}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{12} for x_{1} and -\frac{1}{4} for x_{2}.
48x^{2}+8x-1=48\left(x-\frac{1}{12}\right)\left(x+\frac{1}{4}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
48x^{2}+8x-1=48\times \frac{12x-1}{12}\left(x+\frac{1}{4}\right)
Subtract \frac{1}{12} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
48x^{2}+8x-1=48\times \frac{12x-1}{12}\times \frac{4x+1}{4}
Add \frac{1}{4} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
48x^{2}+8x-1=48\times \frac{\left(12x-1\right)\left(4x+1\right)}{12\times 4}
Multiply \frac{12x-1}{12} times \frac{4x+1}{4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
48x^{2}+8x-1=48\times \frac{\left(12x-1\right)\left(4x+1\right)}{48}
Multiply 12 times 4.
48x^{2}+8x-1=\left(12x-1\right)\left(4x+1\right)
Cancel out 48, the greatest common factor in 48 and 48.