Evaluate
\frac{16}{11}\approx 1.454545455
Factor
\frac{2 ^ {4}}{11} = 1\frac{5}{11} = 1.4545454545454546
Share
Copied to clipboard
\begin{array}{l}\phantom{33)}\phantom{1}\\33\overline{)48}\\\end{array}
Use the 1^{st} digit 4 from dividend 48
\begin{array}{l}\phantom{33)}0\phantom{2}\\33\overline{)48}\\\end{array}
Since 4 is less than 33, use the next digit 8 from dividend 48 and add 0 to the quotient
\begin{array}{l}\phantom{33)}0\phantom{3}\\33\overline{)48}\\\end{array}
Use the 2^{nd} digit 8 from dividend 48
\begin{array}{l}\phantom{33)}01\phantom{4}\\33\overline{)48}\\\phantom{33)}\underline{\phantom{}33\phantom{}}\\\phantom{33)}15\\\end{array}
Find closest multiple of 33 to 48. We see that 1 \times 33 = 33 is the nearest. Now subtract 33 from 48 to get reminder 15. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }15
Since 15 is less than 33, stop the division. The reminder is 15. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}