Evaluate
\frac{94\sqrt{7}}{7}-\frac{128\sqrt{5}}{15}\approx 16.447547055
Factor
\frac{2 {(705 \sqrt{7} - 448 \sqrt{5})}}{105} = 16.447547054869155
Share
Copied to clipboard
\frac{48}{2\sqrt{7}}-\frac{68}{\sqrt{45}}-2\sqrt{20}+2\sqrt{175}
Factor 28=2^{2}\times 7. Rewrite the square root of the product \sqrt{2^{2}\times 7} as the product of square roots \sqrt{2^{2}}\sqrt{7}. Take the square root of 2^{2}.
\frac{48\sqrt{7}}{2\left(\sqrt{7}\right)^{2}}-\frac{68}{\sqrt{45}}-2\sqrt{20}+2\sqrt{175}
Rationalize the denominator of \frac{48}{2\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{48\sqrt{7}}{2\times 7}-\frac{68}{\sqrt{45}}-2\sqrt{20}+2\sqrt{175}
The square of \sqrt{7} is 7.
\frac{24\sqrt{7}}{7}-\frac{68}{\sqrt{45}}-2\sqrt{20}+2\sqrt{175}
Cancel out 2 in both numerator and denominator.
\frac{24\sqrt{7}}{7}-\frac{68}{3\sqrt{5}}-2\sqrt{20}+2\sqrt{175}
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
\frac{24\sqrt{7}}{7}-\frac{68\sqrt{5}}{3\left(\sqrt{5}\right)^{2}}-2\sqrt{20}+2\sqrt{175}
Rationalize the denominator of \frac{68}{3\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{24\sqrt{7}}{7}-\frac{68\sqrt{5}}{3\times 5}-2\sqrt{20}+2\sqrt{175}
The square of \sqrt{5} is 5.
\frac{24\sqrt{7}}{7}-\frac{68\sqrt{5}}{15}-2\sqrt{20}+2\sqrt{175}
Multiply 3 and 5 to get 15.
\frac{24\sqrt{7}}{7}-\frac{68\sqrt{5}}{15}-2\times 2\sqrt{5}+2\sqrt{175}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\frac{24\sqrt{7}}{7}-\frac{68\sqrt{5}}{15}-4\sqrt{5}+2\sqrt{175}
Multiply -2 and 2 to get -4.
\frac{24\sqrt{7}}{7}-\frac{128}{15}\sqrt{5}+2\sqrt{175}
Combine -\frac{68\sqrt{5}}{15} and -4\sqrt{5} to get -\frac{128}{15}\sqrt{5}.
\frac{24\sqrt{7}}{7}-\frac{128}{15}\sqrt{5}+2\times 5\sqrt{7}
Factor 175=5^{2}\times 7. Rewrite the square root of the product \sqrt{5^{2}\times 7} as the product of square roots \sqrt{5^{2}}\sqrt{7}. Take the square root of 5^{2}.
\frac{24\sqrt{7}}{7}-\frac{128}{15}\sqrt{5}+10\sqrt{7}
Multiply 2 and 5 to get 10.
\frac{94}{7}\sqrt{7}-\frac{128}{15}\sqrt{5}
Combine \frac{24\sqrt{7}}{7} and 10\sqrt{7} to get \frac{94}{7}\sqrt{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}