Evaluate
\frac{478}{13}\approx 36.769230769
Factor
\frac{2 \cdot 239}{13} = 36\frac{10}{13} = 36.76923076923077
Share
Copied to clipboard
\begin{array}{l}\phantom{13)}\phantom{1}\\13\overline{)478}\\\end{array}
Use the 1^{st} digit 4 from dividend 478
\begin{array}{l}\phantom{13)}0\phantom{2}\\13\overline{)478}\\\end{array}
Since 4 is less than 13, use the next digit 7 from dividend 478 and add 0 to the quotient
\begin{array}{l}\phantom{13)}0\phantom{3}\\13\overline{)478}\\\end{array}
Use the 2^{nd} digit 7 from dividend 478
\begin{array}{l}\phantom{13)}03\phantom{4}\\13\overline{)478}\\\phantom{13)}\underline{\phantom{}39\phantom{9}}\\\phantom{13)9}8\\\end{array}
Find closest multiple of 13 to 47. We see that 3 \times 13 = 39 is the nearest. Now subtract 39 from 47 to get reminder 8. Add 3 to quotient.
\begin{array}{l}\phantom{13)}03\phantom{5}\\13\overline{)478}\\\phantom{13)}\underline{\phantom{}39\phantom{9}}\\\phantom{13)9}88\\\end{array}
Use the 3^{rd} digit 8 from dividend 478
\begin{array}{l}\phantom{13)}036\phantom{6}\\13\overline{)478}\\\phantom{13)}\underline{\phantom{}39\phantom{9}}\\\phantom{13)9}88\\\phantom{13)}\underline{\phantom{9}78\phantom{}}\\\phantom{13)9}10\\\end{array}
Find closest multiple of 13 to 88. We see that 6 \times 13 = 78 is the nearest. Now subtract 78 from 88 to get reminder 10. Add 6 to quotient.
\text{Quotient: }36 \text{Reminder: }10
Since 10 is less than 13, stop the division. The reminder is 10. The topmost line 036 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 36.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}