Evaluate
\frac{119}{5}=23.8
Factor
\frac{7 \cdot 17}{5} = 23\frac{4}{5} = 23.8
Share
Copied to clipboard
\begin{array}{l}\phantom{20)}\phantom{1}\\20\overline{)476}\\\end{array}
Use the 1^{st} digit 4 from dividend 476
\begin{array}{l}\phantom{20)}0\phantom{2}\\20\overline{)476}\\\end{array}
Since 4 is less than 20, use the next digit 7 from dividend 476 and add 0 to the quotient
\begin{array}{l}\phantom{20)}0\phantom{3}\\20\overline{)476}\\\end{array}
Use the 2^{nd} digit 7 from dividend 476
\begin{array}{l}\phantom{20)}02\phantom{4}\\20\overline{)476}\\\phantom{20)}\underline{\phantom{}40\phantom{9}}\\\phantom{20)9}7\\\end{array}
Find closest multiple of 20 to 47. We see that 2 \times 20 = 40 is the nearest. Now subtract 40 from 47 to get reminder 7. Add 2 to quotient.
\begin{array}{l}\phantom{20)}02\phantom{5}\\20\overline{)476}\\\phantom{20)}\underline{\phantom{}40\phantom{9}}\\\phantom{20)9}76\\\end{array}
Use the 3^{rd} digit 6 from dividend 476
\begin{array}{l}\phantom{20)}023\phantom{6}\\20\overline{)476}\\\phantom{20)}\underline{\phantom{}40\phantom{9}}\\\phantom{20)9}76\\\phantom{20)}\underline{\phantom{9}60\phantom{}}\\\phantom{20)9}16\\\end{array}
Find closest multiple of 20 to 76. We see that 3 \times 20 = 60 is the nearest. Now subtract 60 from 76 to get reminder 16. Add 3 to quotient.
\text{Quotient: }23 \text{Reminder: }16
Since 16 is less than 20, stop the division. The reminder is 16. The topmost line 023 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 23.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}