Evaluate
\frac{471}{79}\approx 5.962025316
Factor
\frac{3 \cdot 157}{79} = 5\frac{76}{79} = 5.962025316455696
Share
Copied to clipboard
\begin{array}{l}\phantom{79)}\phantom{1}\\79\overline{)471}\\\end{array}
Use the 1^{st} digit 4 from dividend 471
\begin{array}{l}\phantom{79)}0\phantom{2}\\79\overline{)471}\\\end{array}
Since 4 is less than 79, use the next digit 7 from dividend 471 and add 0 to the quotient
\begin{array}{l}\phantom{79)}0\phantom{3}\\79\overline{)471}\\\end{array}
Use the 2^{nd} digit 7 from dividend 471
\begin{array}{l}\phantom{79)}00\phantom{4}\\79\overline{)471}\\\end{array}
Since 47 is less than 79, use the next digit 1 from dividend 471 and add 0 to the quotient
\begin{array}{l}\phantom{79)}00\phantom{5}\\79\overline{)471}\\\end{array}
Use the 3^{rd} digit 1 from dividend 471
\begin{array}{l}\phantom{79)}005\phantom{6}\\79\overline{)471}\\\phantom{79)}\underline{\phantom{}395\phantom{}}\\\phantom{79)9}76\\\end{array}
Find closest multiple of 79 to 471. We see that 5 \times 79 = 395 is the nearest. Now subtract 395 from 471 to get reminder 76. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }76
Since 76 is less than 79, stop the division. The reminder is 76. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}