Solve for m
m=1
m=-1
Share
Copied to clipboard
628=628m^{2}
Add 471 and 157 to get 628.
628m^{2}=628
Swap sides so that all variable terms are on the left hand side.
628m^{2}-628=0
Subtract 628 from both sides.
m^{2}-1=0
Divide both sides by 628.
\left(m-1\right)\left(m+1\right)=0
Consider m^{2}-1. Rewrite m^{2}-1 as m^{2}-1^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
m=1 m=-1
To find equation solutions, solve m-1=0 and m+1=0.
628=628m^{2}
Add 471 and 157 to get 628.
628m^{2}=628
Swap sides so that all variable terms are on the left hand side.
m^{2}=\frac{628}{628}
Divide both sides by 628.
m^{2}=1
Divide 628 by 628 to get 1.
m=1 m=-1
Take the square root of both sides of the equation.
628=628m^{2}
Add 471 and 157 to get 628.
628m^{2}=628
Swap sides so that all variable terms are on the left hand side.
628m^{2}-628=0
Subtract 628 from both sides.
m=\frac{0±\sqrt{0^{2}-4\times 628\left(-628\right)}}{2\times 628}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 628 for a, 0 for b, and -628 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{0±\sqrt{-4\times 628\left(-628\right)}}{2\times 628}
Square 0.
m=\frac{0±\sqrt{-2512\left(-628\right)}}{2\times 628}
Multiply -4 times 628.
m=\frac{0±\sqrt{1577536}}{2\times 628}
Multiply -2512 times -628.
m=\frac{0±1256}{2\times 628}
Take the square root of 1577536.
m=\frac{0±1256}{1256}
Multiply 2 times 628.
m=1
Now solve the equation m=\frac{0±1256}{1256} when ± is plus. Divide 1256 by 1256.
m=-1
Now solve the equation m=\frac{0±1256}{1256} when ± is minus. Divide -1256 by 1256.
m=1 m=-1
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}