Solve for x
x=\frac{7\sqrt{3}-57}{47}\approx -0.954800944
x=\frac{-7\sqrt{3}-57}{47}\approx -1.470730971
Graph
Share
Copied to clipboard
47x^{2}+114x+66=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-114±\sqrt{114^{2}-4\times 47\times 66}}{2\times 47}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 47 for a, 114 for b, and 66 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-114±\sqrt{12996-4\times 47\times 66}}{2\times 47}
Square 114.
x=\frac{-114±\sqrt{12996-188\times 66}}{2\times 47}
Multiply -4 times 47.
x=\frac{-114±\sqrt{12996-12408}}{2\times 47}
Multiply -188 times 66.
x=\frac{-114±\sqrt{588}}{2\times 47}
Add 12996 to -12408.
x=\frac{-114±14\sqrt{3}}{2\times 47}
Take the square root of 588.
x=\frac{-114±14\sqrt{3}}{94}
Multiply 2 times 47.
x=\frac{14\sqrt{3}-114}{94}
Now solve the equation x=\frac{-114±14\sqrt{3}}{94} when ± is plus. Add -114 to 14\sqrt{3}.
x=\frac{7\sqrt{3}-57}{47}
Divide -114+14\sqrt{3} by 94.
x=\frac{-14\sqrt{3}-114}{94}
Now solve the equation x=\frac{-114±14\sqrt{3}}{94} when ± is minus. Subtract 14\sqrt{3} from -114.
x=\frac{-7\sqrt{3}-57}{47}
Divide -114-14\sqrt{3} by 94.
x=\frac{7\sqrt{3}-57}{47} x=\frac{-7\sqrt{3}-57}{47}
The equation is now solved.
47x^{2}+114x+66=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
47x^{2}+114x+66-66=-66
Subtract 66 from both sides of the equation.
47x^{2}+114x=-66
Subtracting 66 from itself leaves 0.
\frac{47x^{2}+114x}{47}=-\frac{66}{47}
Divide both sides by 47.
x^{2}+\frac{114}{47}x=-\frac{66}{47}
Dividing by 47 undoes the multiplication by 47.
x^{2}+\frac{114}{47}x+\left(\frac{57}{47}\right)^{2}=-\frac{66}{47}+\left(\frac{57}{47}\right)^{2}
Divide \frac{114}{47}, the coefficient of the x term, by 2 to get \frac{57}{47}. Then add the square of \frac{57}{47} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{114}{47}x+\frac{3249}{2209}=-\frac{66}{47}+\frac{3249}{2209}
Square \frac{57}{47} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{114}{47}x+\frac{3249}{2209}=\frac{147}{2209}
Add -\frac{66}{47} to \frac{3249}{2209} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{57}{47}\right)^{2}=\frac{147}{2209}
Factor x^{2}+\frac{114}{47}x+\frac{3249}{2209}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{57}{47}\right)^{2}}=\sqrt{\frac{147}{2209}}
Take the square root of both sides of the equation.
x+\frac{57}{47}=\frac{7\sqrt{3}}{47} x+\frac{57}{47}=-\frac{7\sqrt{3}}{47}
Simplify.
x=\frac{7\sqrt{3}-57}{47} x=\frac{-7\sqrt{3}-57}{47}
Subtract \frac{57}{47} from both sides of the equation.
x ^ 2 +\frac{114}{47}x +\frac{66}{47} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 47
r + s = -\frac{114}{47} rs = \frac{66}{47}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{57}{47} - u s = -\frac{57}{47} + u
Two numbers r and s sum up to -\frac{114}{47} exactly when the average of the two numbers is \frac{1}{2}*-\frac{114}{47} = -\frac{57}{47}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath-gzdabgg4ehffg0hf.b01.azurefd.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{57}{47} - u) (-\frac{57}{47} + u) = \frac{66}{47}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{66}{47}
\frac{3249}{2209} - u^2 = \frac{66}{47}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{66}{47}-\frac{3249}{2209} = -\frac{147}{2209}
Simplify the expression by subtracting \frac{3249}{2209} on both sides
u^2 = \frac{147}{2209} u = \pm\sqrt{\frac{147}{2209}} = \pm \frac{\sqrt{147}}{47}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{57}{47} - \frac{\sqrt{147}}{47} = -1.471 s = -\frac{57}{47} + \frac{\sqrt{147}}{47} = -0.955
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}