Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

47x^{2}+6x+10=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{6^{2}-4\times 47\times 10}}{2\times 47}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 47 for a, 6 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 47\times 10}}{2\times 47}
Square 6.
x=\frac{-6±\sqrt{36-188\times 10}}{2\times 47}
Multiply -4 times 47.
x=\frac{-6±\sqrt{36-1880}}{2\times 47}
Multiply -188 times 10.
x=\frac{-6±\sqrt{-1844}}{2\times 47}
Add 36 to -1880.
x=\frac{-6±2\sqrt{461}i}{2\times 47}
Take the square root of -1844.
x=\frac{-6±2\sqrt{461}i}{94}
Multiply 2 times 47.
x=\frac{-6+2\sqrt{461}i}{94}
Now solve the equation x=\frac{-6±2\sqrt{461}i}{94} when ± is plus. Add -6 to 2i\sqrt{461}.
x=\frac{-3+\sqrt{461}i}{47}
Divide -6+2i\sqrt{461} by 94.
x=\frac{-2\sqrt{461}i-6}{94}
Now solve the equation x=\frac{-6±2\sqrt{461}i}{94} when ± is minus. Subtract 2i\sqrt{461} from -6.
x=\frac{-\sqrt{461}i-3}{47}
Divide -6-2i\sqrt{461} by 94.
x=\frac{-3+\sqrt{461}i}{47} x=\frac{-\sqrt{461}i-3}{47}
The equation is now solved.
47x^{2}+6x+10=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
47x^{2}+6x+10-10=-10
Subtract 10 from both sides of the equation.
47x^{2}+6x=-10
Subtracting 10 from itself leaves 0.
\frac{47x^{2}+6x}{47}=-\frac{10}{47}
Divide both sides by 47.
x^{2}+\frac{6}{47}x=-\frac{10}{47}
Dividing by 47 undoes the multiplication by 47.
x^{2}+\frac{6}{47}x+\left(\frac{3}{47}\right)^{2}=-\frac{10}{47}+\left(\frac{3}{47}\right)^{2}
Divide \frac{6}{47}, the coefficient of the x term, by 2 to get \frac{3}{47}. Then add the square of \frac{3}{47} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{6}{47}x+\frac{9}{2209}=-\frac{10}{47}+\frac{9}{2209}
Square \frac{3}{47} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{6}{47}x+\frac{9}{2209}=-\frac{461}{2209}
Add -\frac{10}{47} to \frac{9}{2209} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{47}\right)^{2}=-\frac{461}{2209}
Factor x^{2}+\frac{6}{47}x+\frac{9}{2209}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{47}\right)^{2}}=\sqrt{-\frac{461}{2209}}
Take the square root of both sides of the equation.
x+\frac{3}{47}=\frac{\sqrt{461}i}{47} x+\frac{3}{47}=-\frac{\sqrt{461}i}{47}
Simplify.
x=\frac{-3+\sqrt{461}i}{47} x=\frac{-\sqrt{461}i-3}{47}
Subtract \frac{3}{47} from both sides of the equation.