Solve for x (complex solution)
x=\frac{-3+\sqrt{461}i}{47}\approx -0.063829787+0.456827884i
x=\frac{-\sqrt{461}i-3}{47}\approx -0.063829787-0.456827884i
Graph
Share
Copied to clipboard
47x^{2}+6x+10=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{6^{2}-4\times 47\times 10}}{2\times 47}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 47 for a, 6 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 47\times 10}}{2\times 47}
Square 6.
x=\frac{-6±\sqrt{36-188\times 10}}{2\times 47}
Multiply -4 times 47.
x=\frac{-6±\sqrt{36-1880}}{2\times 47}
Multiply -188 times 10.
x=\frac{-6±\sqrt{-1844}}{2\times 47}
Add 36 to -1880.
x=\frac{-6±2\sqrt{461}i}{2\times 47}
Take the square root of -1844.
x=\frac{-6±2\sqrt{461}i}{94}
Multiply 2 times 47.
x=\frac{-6+2\sqrt{461}i}{94}
Now solve the equation x=\frac{-6±2\sqrt{461}i}{94} when ± is plus. Add -6 to 2i\sqrt{461}.
x=\frac{-3+\sqrt{461}i}{47}
Divide -6+2i\sqrt{461} by 94.
x=\frac{-2\sqrt{461}i-6}{94}
Now solve the equation x=\frac{-6±2\sqrt{461}i}{94} when ± is minus. Subtract 2i\sqrt{461} from -6.
x=\frac{-\sqrt{461}i-3}{47}
Divide -6-2i\sqrt{461} by 94.
x=\frac{-3+\sqrt{461}i}{47} x=\frac{-\sqrt{461}i-3}{47}
The equation is now solved.
47x^{2}+6x+10=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
47x^{2}+6x+10-10=-10
Subtract 10 from both sides of the equation.
47x^{2}+6x=-10
Subtracting 10 from itself leaves 0.
\frac{47x^{2}+6x}{47}=-\frac{10}{47}
Divide both sides by 47.
x^{2}+\frac{6}{47}x=-\frac{10}{47}
Dividing by 47 undoes the multiplication by 47.
x^{2}+\frac{6}{47}x+\left(\frac{3}{47}\right)^{2}=-\frac{10}{47}+\left(\frac{3}{47}\right)^{2}
Divide \frac{6}{47}, the coefficient of the x term, by 2 to get \frac{3}{47}. Then add the square of \frac{3}{47} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{6}{47}x+\frac{9}{2209}=-\frac{10}{47}+\frac{9}{2209}
Square \frac{3}{47} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{6}{47}x+\frac{9}{2209}=-\frac{461}{2209}
Add -\frac{10}{47} to \frac{9}{2209} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{47}\right)^{2}=-\frac{461}{2209}
Factor x^{2}+\frac{6}{47}x+\frac{9}{2209}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{47}\right)^{2}}=\sqrt{-\frac{461}{2209}}
Take the square root of both sides of the equation.
x+\frac{3}{47}=\frac{\sqrt{461}i}{47} x+\frac{3}{47}=-\frac{\sqrt{461}i}{47}
Simplify.
x=\frac{-3+\sqrt{461}i}{47} x=\frac{-\sqrt{461}i-3}{47}
Subtract \frac{3}{47} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}