Evaluate
147887424x^{4}
Differentiate w.r.t. x
591549696x^{3}
Graph
Share
Copied to clipboard
46x^{2}\times 366^{2}x\times 24x
Multiply x and x to get x^{2}.
46x^{3}\times 366^{2}\times 24x
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
46x^{4}\times 366^{2}\times 24
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
46x^{4}\times 133956\times 24
Calculate 366 to the power of 2 and get 133956.
6161976x^{4}\times 24
Multiply 46 and 133956 to get 6161976.
147887424x^{4}
Multiply 6161976 and 24 to get 147887424.
\frac{\mathrm{d}}{\mathrm{d}x}(46x^{2}\times 366^{2}x\times 24x)
Multiply x and x to get x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(46x^{3}\times 366^{2}\times 24x)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{\mathrm{d}}{\mathrm{d}x}(46x^{4}\times 366^{2}\times 24)
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
\frac{\mathrm{d}}{\mathrm{d}x}(46x^{4}\times 133956\times 24)
Calculate 366 to the power of 2 and get 133956.
\frac{\mathrm{d}}{\mathrm{d}x}(6161976x^{4}\times 24)
Multiply 46 and 133956 to get 6161976.
\frac{\mathrm{d}}{\mathrm{d}x}(147887424x^{4})
Multiply 6161976 and 24 to get 147887424.
4\times 147887424x^{4-1}
The derivative of ax^{n} is nax^{n-1}.
591549696x^{4-1}
Multiply 4 times 147887424.
591549696x^{3}
Subtract 1 from 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}