Evaluate
\frac{93}{26}\approx 3.576923077
Factor
\frac{3 \cdot 31}{2 \cdot 13} = 3\frac{15}{26} = 3.576923076923077
Share
Copied to clipboard
\begin{array}{l}\phantom{130)}\phantom{1}\\130\overline{)465}\\\end{array}
Use the 1^{st} digit 4 from dividend 465
\begin{array}{l}\phantom{130)}0\phantom{2}\\130\overline{)465}\\\end{array}
Since 4 is less than 130, use the next digit 6 from dividend 465 and add 0 to the quotient
\begin{array}{l}\phantom{130)}0\phantom{3}\\130\overline{)465}\\\end{array}
Use the 2^{nd} digit 6 from dividend 465
\begin{array}{l}\phantom{130)}00\phantom{4}\\130\overline{)465}\\\end{array}
Since 46 is less than 130, use the next digit 5 from dividend 465 and add 0 to the quotient
\begin{array}{l}\phantom{130)}00\phantom{5}\\130\overline{)465}\\\end{array}
Use the 3^{rd} digit 5 from dividend 465
\begin{array}{l}\phantom{130)}003\phantom{6}\\130\overline{)465}\\\phantom{130)}\underline{\phantom{}390\phantom{}}\\\phantom{130)9}75\\\end{array}
Find closest multiple of 130 to 465. We see that 3 \times 130 = 390 is the nearest. Now subtract 390 from 465 to get reminder 75. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }75
Since 75 is less than 130, stop the division. The reminder is 75. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}