Evaluate
\frac{154}{13}\approx 11.846153846
Factor
\frac{2 \cdot 7 \cdot 11}{13} = 11\frac{11}{13} = 11.846153846153847
Share
Copied to clipboard
\begin{array}{l}\phantom{39)}\phantom{1}\\39\overline{)462}\\\end{array}
Use the 1^{st} digit 4 from dividend 462
\begin{array}{l}\phantom{39)}0\phantom{2}\\39\overline{)462}\\\end{array}
Since 4 is less than 39, use the next digit 6 from dividend 462 and add 0 to the quotient
\begin{array}{l}\phantom{39)}0\phantom{3}\\39\overline{)462}\\\end{array}
Use the 2^{nd} digit 6 from dividend 462
\begin{array}{l}\phantom{39)}01\phantom{4}\\39\overline{)462}\\\phantom{39)}\underline{\phantom{}39\phantom{9}}\\\phantom{39)9}7\\\end{array}
Find closest multiple of 39 to 46. We see that 1 \times 39 = 39 is the nearest. Now subtract 39 from 46 to get reminder 7. Add 1 to quotient.
\begin{array}{l}\phantom{39)}01\phantom{5}\\39\overline{)462}\\\phantom{39)}\underline{\phantom{}39\phantom{9}}\\\phantom{39)9}72\\\end{array}
Use the 3^{rd} digit 2 from dividend 462
\begin{array}{l}\phantom{39)}011\phantom{6}\\39\overline{)462}\\\phantom{39)}\underline{\phantom{}39\phantom{9}}\\\phantom{39)9}72\\\phantom{39)}\underline{\phantom{9}39\phantom{}}\\\phantom{39)9}33\\\end{array}
Find closest multiple of 39 to 72. We see that 1 \times 39 = 39 is the nearest. Now subtract 39 from 72 to get reminder 33. Add 1 to quotient.
\text{Quotient: }11 \text{Reminder: }33
Since 33 is less than 39, stop the division. The reminder is 33. The topmost line 011 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}