Evaluate
\frac{460}{61}\approx 7.540983607
Factor
\frac{2 ^ {2} \cdot 5 \cdot 23}{61} = 7\frac{33}{61} = 7.540983606557377
Share
Copied to clipboard
\begin{array}{l}\phantom{61)}\phantom{1}\\61\overline{)460}\\\end{array}
Use the 1^{st} digit 4 from dividend 460
\begin{array}{l}\phantom{61)}0\phantom{2}\\61\overline{)460}\\\end{array}
Since 4 is less than 61, use the next digit 6 from dividend 460 and add 0 to the quotient
\begin{array}{l}\phantom{61)}0\phantom{3}\\61\overline{)460}\\\end{array}
Use the 2^{nd} digit 6 from dividend 460
\begin{array}{l}\phantom{61)}00\phantom{4}\\61\overline{)460}\\\end{array}
Since 46 is less than 61, use the next digit 0 from dividend 460 and add 0 to the quotient
\begin{array}{l}\phantom{61)}00\phantom{5}\\61\overline{)460}\\\end{array}
Use the 3^{rd} digit 0 from dividend 460
\begin{array}{l}\phantom{61)}007\phantom{6}\\61\overline{)460}\\\phantom{61)}\underline{\phantom{}427\phantom{}}\\\phantom{61)9}33\\\end{array}
Find closest multiple of 61 to 460. We see that 7 \times 61 = 427 is the nearest. Now subtract 427 from 460 to get reminder 33. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }33
Since 33 is less than 61, stop the division. The reminder is 33. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}