Evaluate
\frac{46}{3}\approx 15.333333333
Factor
\frac{2 \cdot 23}{3} = 15\frac{1}{3} = 15.333333333333334
Share
Copied to clipboard
\begin{array}{l}\phantom{30)}\phantom{1}\\30\overline{)460}\\\end{array}
Use the 1^{st} digit 4 from dividend 460
\begin{array}{l}\phantom{30)}0\phantom{2}\\30\overline{)460}\\\end{array}
Since 4 is less than 30, use the next digit 6 from dividend 460 and add 0 to the quotient
\begin{array}{l}\phantom{30)}0\phantom{3}\\30\overline{)460}\\\end{array}
Use the 2^{nd} digit 6 from dividend 460
\begin{array}{l}\phantom{30)}01\phantom{4}\\30\overline{)460}\\\phantom{30)}\underline{\phantom{}30\phantom{9}}\\\phantom{30)}16\\\end{array}
Find closest multiple of 30 to 46. We see that 1 \times 30 = 30 is the nearest. Now subtract 30 from 46 to get reminder 16. Add 1 to quotient.
\begin{array}{l}\phantom{30)}01\phantom{5}\\30\overline{)460}\\\phantom{30)}\underline{\phantom{}30\phantom{9}}\\\phantom{30)}160\\\end{array}
Use the 3^{rd} digit 0 from dividend 460
\begin{array}{l}\phantom{30)}015\phantom{6}\\30\overline{)460}\\\phantom{30)}\underline{\phantom{}30\phantom{9}}\\\phantom{30)}160\\\phantom{30)}\underline{\phantom{}150\phantom{}}\\\phantom{30)9}10\\\end{array}
Find closest multiple of 30 to 160. We see that 5 \times 30 = 150 is the nearest. Now subtract 150 from 160 to get reminder 10. Add 5 to quotient.
\text{Quotient: }15 \text{Reminder: }10
Since 10 is less than 30, stop the division. The reminder is 10. The topmost line 015 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}