46 \times 125 + 1 \frac { 1 } { 4 } \times 43 - 09 \times 125 \% - 1
Evaluate
\frac{23211}{4}=5802.75
Factor
\frac{3 ^ {2} \cdot 2579}{2 ^ {2}} = 5802\frac{3}{4} = 5802.75
Share
Copied to clipboard
5750+\frac{1\times 4+1}{4}\times 43-0\times 9\times \frac{125}{100}-1
Multiply 46 and 125 to get 5750.
5750+\frac{4+1}{4}\times 43-0\times 9\times \frac{125}{100}-1
Multiply 1 and 4 to get 4.
5750+\frac{5}{4}\times 43-0\times 9\times \frac{125}{100}-1
Add 4 and 1 to get 5.
5750+\frac{5\times 43}{4}-0\times 9\times \frac{125}{100}-1
Express \frac{5}{4}\times 43 as a single fraction.
5750+\frac{215}{4}-0\times 9\times \frac{125}{100}-1
Multiply 5 and 43 to get 215.
\frac{23000}{4}+\frac{215}{4}-0\times 9\times \frac{125}{100}-1
Convert 5750 to fraction \frac{23000}{4}.
\frac{23000+215}{4}-0\times 9\times \frac{125}{100}-1
Since \frac{23000}{4} and \frac{215}{4} have the same denominator, add them by adding their numerators.
\frac{23215}{4}-0\times 9\times \frac{125}{100}-1
Add 23000 and 215 to get 23215.
\frac{23215}{4}-0\times \frac{125}{100}-1
Multiply 0 and 9 to get 0.
\frac{23215}{4}-0\times \frac{5}{4}-1
Reduce the fraction \frac{125}{100} to lowest terms by extracting and canceling out 25.
\frac{23215}{4}-0-1
Multiply 0 and \frac{5}{4} to get 0.
\frac{23215}{4}-1
Subtract 0 from \frac{23215}{4} to get \frac{23215}{4}.
\frac{23215}{4}-\frac{4}{4}
Convert 1 to fraction \frac{4}{4}.
\frac{23215-4}{4}
Since \frac{23215}{4} and \frac{4}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{23211}{4}
Subtract 4 from 23215 to get 23211.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}