Evaluate
\frac{458}{63}\approx 7.26984127
Factor
\frac{2 \cdot 229}{3 ^ {2} \cdot 7} = 7\frac{17}{63} = 7.26984126984127
Share
Copied to clipboard
\begin{array}{l}\phantom{63)}\phantom{1}\\63\overline{)458}\\\end{array}
Use the 1^{st} digit 4 from dividend 458
\begin{array}{l}\phantom{63)}0\phantom{2}\\63\overline{)458}\\\end{array}
Since 4 is less than 63, use the next digit 5 from dividend 458 and add 0 to the quotient
\begin{array}{l}\phantom{63)}0\phantom{3}\\63\overline{)458}\\\end{array}
Use the 2^{nd} digit 5 from dividend 458
\begin{array}{l}\phantom{63)}00\phantom{4}\\63\overline{)458}\\\end{array}
Since 45 is less than 63, use the next digit 8 from dividend 458 and add 0 to the quotient
\begin{array}{l}\phantom{63)}00\phantom{5}\\63\overline{)458}\\\end{array}
Use the 3^{rd} digit 8 from dividend 458
\begin{array}{l}\phantom{63)}007\phantom{6}\\63\overline{)458}\\\phantom{63)}\underline{\phantom{}441\phantom{}}\\\phantom{63)9}17\\\end{array}
Find closest multiple of 63 to 458. We see that 7 \times 63 = 441 is the nearest. Now subtract 441 from 458 to get reminder 17. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }17
Since 17 is less than 63, stop the division. The reminder is 17. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}