Evaluate
\frac{456352}{25}=18254.08
Factor
\frac{2 ^ {5} \cdot 13 \cdot 1097}{5 ^ {2}} = 18254\frac{2}{25} = 18254.08
Share
Copied to clipboard
\begin{array}{l}\phantom{25)}\phantom{1}\\25\overline{)456352}\\\end{array}
Use the 1^{st} digit 4 from dividend 456352
\begin{array}{l}\phantom{25)}0\phantom{2}\\25\overline{)456352}\\\end{array}
Since 4 is less than 25, use the next digit 5 from dividend 456352 and add 0 to the quotient
\begin{array}{l}\phantom{25)}0\phantom{3}\\25\overline{)456352}\\\end{array}
Use the 2^{nd} digit 5 from dividend 456352
\begin{array}{l}\phantom{25)}01\phantom{4}\\25\overline{)456352}\\\phantom{25)}\underline{\phantom{}25\phantom{9999}}\\\phantom{25)}20\\\end{array}
Find closest multiple of 25 to 45. We see that 1 \times 25 = 25 is the nearest. Now subtract 25 from 45 to get reminder 20. Add 1 to quotient.
\begin{array}{l}\phantom{25)}01\phantom{5}\\25\overline{)456352}\\\phantom{25)}\underline{\phantom{}25\phantom{9999}}\\\phantom{25)}206\\\end{array}
Use the 3^{rd} digit 6 from dividend 456352
\begin{array}{l}\phantom{25)}018\phantom{6}\\25\overline{)456352}\\\phantom{25)}\underline{\phantom{}25\phantom{9999}}\\\phantom{25)}206\\\phantom{25)}\underline{\phantom{}200\phantom{999}}\\\phantom{25)99}6\\\end{array}
Find closest multiple of 25 to 206. We see that 8 \times 25 = 200 is the nearest. Now subtract 200 from 206 to get reminder 6. Add 8 to quotient.
\begin{array}{l}\phantom{25)}018\phantom{7}\\25\overline{)456352}\\\phantom{25)}\underline{\phantom{}25\phantom{9999}}\\\phantom{25)}206\\\phantom{25)}\underline{\phantom{}200\phantom{999}}\\\phantom{25)99}63\\\end{array}
Use the 4^{th} digit 3 from dividend 456352
\begin{array}{l}\phantom{25)}0182\phantom{8}\\25\overline{)456352}\\\phantom{25)}\underline{\phantom{}25\phantom{9999}}\\\phantom{25)}206\\\phantom{25)}\underline{\phantom{}200\phantom{999}}\\\phantom{25)99}63\\\phantom{25)}\underline{\phantom{99}50\phantom{99}}\\\phantom{25)99}13\\\end{array}
Find closest multiple of 25 to 63. We see that 2 \times 25 = 50 is the nearest. Now subtract 50 from 63 to get reminder 13. Add 2 to quotient.
\begin{array}{l}\phantom{25)}0182\phantom{9}\\25\overline{)456352}\\\phantom{25)}\underline{\phantom{}25\phantom{9999}}\\\phantom{25)}206\\\phantom{25)}\underline{\phantom{}200\phantom{999}}\\\phantom{25)99}63\\\phantom{25)}\underline{\phantom{99}50\phantom{99}}\\\phantom{25)99}135\\\end{array}
Use the 5^{th} digit 5 from dividend 456352
\begin{array}{l}\phantom{25)}01825\phantom{10}\\25\overline{)456352}\\\phantom{25)}\underline{\phantom{}25\phantom{9999}}\\\phantom{25)}206\\\phantom{25)}\underline{\phantom{}200\phantom{999}}\\\phantom{25)99}63\\\phantom{25)}\underline{\phantom{99}50\phantom{99}}\\\phantom{25)99}135\\\phantom{25)}\underline{\phantom{99}125\phantom{9}}\\\phantom{25)999}10\\\end{array}
Find closest multiple of 25 to 135. We see that 5 \times 25 = 125 is the nearest. Now subtract 125 from 135 to get reminder 10. Add 5 to quotient.
\begin{array}{l}\phantom{25)}01825\phantom{11}\\25\overline{)456352}\\\phantom{25)}\underline{\phantom{}25\phantom{9999}}\\\phantom{25)}206\\\phantom{25)}\underline{\phantom{}200\phantom{999}}\\\phantom{25)99}63\\\phantom{25)}\underline{\phantom{99}50\phantom{99}}\\\phantom{25)99}135\\\phantom{25)}\underline{\phantom{99}125\phantom{9}}\\\phantom{25)999}102\\\end{array}
Use the 6^{th} digit 2 from dividend 456352
\begin{array}{l}\phantom{25)}018254\phantom{12}\\25\overline{)456352}\\\phantom{25)}\underline{\phantom{}25\phantom{9999}}\\\phantom{25)}206\\\phantom{25)}\underline{\phantom{}200\phantom{999}}\\\phantom{25)99}63\\\phantom{25)}\underline{\phantom{99}50\phantom{99}}\\\phantom{25)99}135\\\phantom{25)}\underline{\phantom{99}125\phantom{9}}\\\phantom{25)999}102\\\phantom{25)}\underline{\phantom{999}100\phantom{}}\\\phantom{25)99999}2\\\end{array}
Find closest multiple of 25 to 102. We see that 4 \times 25 = 100 is the nearest. Now subtract 100 from 102 to get reminder 2. Add 4 to quotient.
\text{Quotient: }18254 \text{Reminder: }2
Since 2 is less than 25, stop the division. The reminder is 2. The topmost line 018254 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 18254.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}