Evaluate
\frac{152116}{81}\approx 1877.975308642
Factor
\frac{2 ^ {2} \cdot 17 \cdot 2237}{3 ^ {4}} = 1877\frac{79}{81} = 1877.9753086419753
Share
Copied to clipboard
\begin{array}{l}\phantom{243)}\phantom{1}\\243\overline{)456348}\\\end{array}
Use the 1^{st} digit 4 from dividend 456348
\begin{array}{l}\phantom{243)}0\phantom{2}\\243\overline{)456348}\\\end{array}
Since 4 is less than 243, use the next digit 5 from dividend 456348 and add 0 to the quotient
\begin{array}{l}\phantom{243)}0\phantom{3}\\243\overline{)456348}\\\end{array}
Use the 2^{nd} digit 5 from dividend 456348
\begin{array}{l}\phantom{243)}00\phantom{4}\\243\overline{)456348}\\\end{array}
Since 45 is less than 243, use the next digit 6 from dividend 456348 and add 0 to the quotient
\begin{array}{l}\phantom{243)}00\phantom{5}\\243\overline{)456348}\\\end{array}
Use the 3^{rd} digit 6 from dividend 456348
\begin{array}{l}\phantom{243)}001\phantom{6}\\243\overline{)456348}\\\phantom{243)}\underline{\phantom{}243\phantom{999}}\\\phantom{243)}213\\\end{array}
Find closest multiple of 243 to 456. We see that 1 \times 243 = 243 is the nearest. Now subtract 243 from 456 to get reminder 213. Add 1 to quotient.
\begin{array}{l}\phantom{243)}001\phantom{7}\\243\overline{)456348}\\\phantom{243)}\underline{\phantom{}243\phantom{999}}\\\phantom{243)}2133\\\end{array}
Use the 4^{th} digit 3 from dividend 456348
\begin{array}{l}\phantom{243)}0018\phantom{8}\\243\overline{)456348}\\\phantom{243)}\underline{\phantom{}243\phantom{999}}\\\phantom{243)}2133\\\phantom{243)}\underline{\phantom{}1944\phantom{99}}\\\phantom{243)9}189\\\end{array}
Find closest multiple of 243 to 2133. We see that 8 \times 243 = 1944 is the nearest. Now subtract 1944 from 2133 to get reminder 189. Add 8 to quotient.
\begin{array}{l}\phantom{243)}0018\phantom{9}\\243\overline{)456348}\\\phantom{243)}\underline{\phantom{}243\phantom{999}}\\\phantom{243)}2133\\\phantom{243)}\underline{\phantom{}1944\phantom{99}}\\\phantom{243)9}1894\\\end{array}
Use the 5^{th} digit 4 from dividend 456348
\begin{array}{l}\phantom{243)}00187\phantom{10}\\243\overline{)456348}\\\phantom{243)}\underline{\phantom{}243\phantom{999}}\\\phantom{243)}2133\\\phantom{243)}\underline{\phantom{}1944\phantom{99}}\\\phantom{243)9}1894\\\phantom{243)}\underline{\phantom{9}1701\phantom{9}}\\\phantom{243)99}193\\\end{array}
Find closest multiple of 243 to 1894. We see that 7 \times 243 = 1701 is the nearest. Now subtract 1701 from 1894 to get reminder 193. Add 7 to quotient.
\begin{array}{l}\phantom{243)}00187\phantom{11}\\243\overline{)456348}\\\phantom{243)}\underline{\phantom{}243\phantom{999}}\\\phantom{243)}2133\\\phantom{243)}\underline{\phantom{}1944\phantom{99}}\\\phantom{243)9}1894\\\phantom{243)}\underline{\phantom{9}1701\phantom{9}}\\\phantom{243)99}1938\\\end{array}
Use the 6^{th} digit 8 from dividend 456348
\begin{array}{l}\phantom{243)}001877\phantom{12}\\243\overline{)456348}\\\phantom{243)}\underline{\phantom{}243\phantom{999}}\\\phantom{243)}2133\\\phantom{243)}\underline{\phantom{}1944\phantom{99}}\\\phantom{243)9}1894\\\phantom{243)}\underline{\phantom{9}1701\phantom{9}}\\\phantom{243)99}1938\\\phantom{243)}\underline{\phantom{99}1701\phantom{}}\\\phantom{243)999}237\\\end{array}
Find closest multiple of 243 to 1938. We see that 7 \times 243 = 1701 is the nearest. Now subtract 1701 from 1938 to get reminder 237. Add 7 to quotient.
\text{Quotient: }1877 \text{Reminder: }237
Since 237 is less than 243, stop the division. The reminder is 237. The topmost line 001877 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1877.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}