Evaluate
38
Factor
2\times 19
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)456}\\\end{array}
Use the 1^{st} digit 4 from dividend 456
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)456}\\\end{array}
Since 4 is less than 12, use the next digit 5 from dividend 456 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)456}\\\end{array}
Use the 2^{nd} digit 5 from dividend 456
\begin{array}{l}\phantom{12)}03\phantom{4}\\12\overline{)456}\\\phantom{12)}\underline{\phantom{}36\phantom{9}}\\\phantom{12)9}9\\\end{array}
Find closest multiple of 12 to 45. We see that 3 \times 12 = 36 is the nearest. Now subtract 36 from 45 to get reminder 9. Add 3 to quotient.
\begin{array}{l}\phantom{12)}03\phantom{5}\\12\overline{)456}\\\phantom{12)}\underline{\phantom{}36\phantom{9}}\\\phantom{12)9}96\\\end{array}
Use the 3^{rd} digit 6 from dividend 456
\begin{array}{l}\phantom{12)}038\phantom{6}\\12\overline{)456}\\\phantom{12)}\underline{\phantom{}36\phantom{9}}\\\phantom{12)9}96\\\phantom{12)}\underline{\phantom{9}96\phantom{}}\\\phantom{12)999}0\\\end{array}
Find closest multiple of 12 to 96. We see that 8 \times 12 = 96 is the nearest. Now subtract 96 from 96 to get reminder 0. Add 8 to quotient.
\text{Quotient: }38 \text{Reminder: }0
Since 0 is less than 12, stop the division. The reminder is 0. The topmost line 038 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 38.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}