Evaluate
7
Factor
7
Share
Copied to clipboard
\begin{array}{l}\phantom{65)}\phantom{1}\\65\overline{)455}\\\end{array}
Use the 1^{st} digit 4 from dividend 455
\begin{array}{l}\phantom{65)}0\phantom{2}\\65\overline{)455}\\\end{array}
Since 4 is less than 65, use the next digit 5 from dividend 455 and add 0 to the quotient
\begin{array}{l}\phantom{65)}0\phantom{3}\\65\overline{)455}\\\end{array}
Use the 2^{nd} digit 5 from dividend 455
\begin{array}{l}\phantom{65)}00\phantom{4}\\65\overline{)455}\\\end{array}
Since 45 is less than 65, use the next digit 5 from dividend 455 and add 0 to the quotient
\begin{array}{l}\phantom{65)}00\phantom{5}\\65\overline{)455}\\\end{array}
Use the 3^{rd} digit 5 from dividend 455
\begin{array}{l}\phantom{65)}007\phantom{6}\\65\overline{)455}\\\phantom{65)}\underline{\phantom{}455\phantom{}}\\\phantom{65)999}0\\\end{array}
Find closest multiple of 65 to 455. We see that 7 \times 65 = 455 is the nearest. Now subtract 455 from 455 to get reminder 0. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }0
Since 0 is less than 65, stop the division. The reminder is 0. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}