Evaluate
\frac{56260}{21}\approx 2679.047619048
Factor
\frac{2 ^ {2} \cdot 5 \cdot 29 \cdot 97}{3 \cdot 7} = 2679\frac{1}{21} = 2679.0476190476193
Share
Copied to clipboard
\begin{array}{l}\phantom{168)}\phantom{1}\\168\overline{)450080}\\\end{array}
Use the 1^{st} digit 4 from dividend 450080
\begin{array}{l}\phantom{168)}0\phantom{2}\\168\overline{)450080}\\\end{array}
Since 4 is less than 168, use the next digit 5 from dividend 450080 and add 0 to the quotient
\begin{array}{l}\phantom{168)}0\phantom{3}\\168\overline{)450080}\\\end{array}
Use the 2^{nd} digit 5 from dividend 450080
\begin{array}{l}\phantom{168)}00\phantom{4}\\168\overline{)450080}\\\end{array}
Since 45 is less than 168, use the next digit 0 from dividend 450080 and add 0 to the quotient
\begin{array}{l}\phantom{168)}00\phantom{5}\\168\overline{)450080}\\\end{array}
Use the 3^{rd} digit 0 from dividend 450080
\begin{array}{l}\phantom{168)}002\phantom{6}\\168\overline{)450080}\\\phantom{168)}\underline{\phantom{}336\phantom{999}}\\\phantom{168)}114\\\end{array}
Find closest multiple of 168 to 450. We see that 2 \times 168 = 336 is the nearest. Now subtract 336 from 450 to get reminder 114. Add 2 to quotient.
\begin{array}{l}\phantom{168)}002\phantom{7}\\168\overline{)450080}\\\phantom{168)}\underline{\phantom{}336\phantom{999}}\\\phantom{168)}1140\\\end{array}
Use the 4^{th} digit 0 from dividend 450080
\begin{array}{l}\phantom{168)}0026\phantom{8}\\168\overline{)450080}\\\phantom{168)}\underline{\phantom{}336\phantom{999}}\\\phantom{168)}1140\\\phantom{168)}\underline{\phantom{}1008\phantom{99}}\\\phantom{168)9}132\\\end{array}
Find closest multiple of 168 to 1140. We see that 6 \times 168 = 1008 is the nearest. Now subtract 1008 from 1140 to get reminder 132. Add 6 to quotient.
\begin{array}{l}\phantom{168)}0026\phantom{9}\\168\overline{)450080}\\\phantom{168)}\underline{\phantom{}336\phantom{999}}\\\phantom{168)}1140\\\phantom{168)}\underline{\phantom{}1008\phantom{99}}\\\phantom{168)9}1328\\\end{array}
Use the 5^{th} digit 8 from dividend 450080
\begin{array}{l}\phantom{168)}00267\phantom{10}\\168\overline{)450080}\\\phantom{168)}\underline{\phantom{}336\phantom{999}}\\\phantom{168)}1140\\\phantom{168)}\underline{\phantom{}1008\phantom{99}}\\\phantom{168)9}1328\\\phantom{168)}\underline{\phantom{9}1176\phantom{9}}\\\phantom{168)99}152\\\end{array}
Find closest multiple of 168 to 1328. We see that 7 \times 168 = 1176 is the nearest. Now subtract 1176 from 1328 to get reminder 152. Add 7 to quotient.
\begin{array}{l}\phantom{168)}00267\phantom{11}\\168\overline{)450080}\\\phantom{168)}\underline{\phantom{}336\phantom{999}}\\\phantom{168)}1140\\\phantom{168)}\underline{\phantom{}1008\phantom{99}}\\\phantom{168)9}1328\\\phantom{168)}\underline{\phantom{9}1176\phantom{9}}\\\phantom{168)99}1520\\\end{array}
Use the 6^{th} digit 0 from dividend 450080
\begin{array}{l}\phantom{168)}002679\phantom{12}\\168\overline{)450080}\\\phantom{168)}\underline{\phantom{}336\phantom{999}}\\\phantom{168)}1140\\\phantom{168)}\underline{\phantom{}1008\phantom{99}}\\\phantom{168)9}1328\\\phantom{168)}\underline{\phantom{9}1176\phantom{9}}\\\phantom{168)99}1520\\\phantom{168)}\underline{\phantom{99}1512\phantom{}}\\\phantom{168)99999}8\\\end{array}
Find closest multiple of 168 to 1520. We see that 9 \times 168 = 1512 is the nearest. Now subtract 1512 from 1520 to get reminder 8. Add 9 to quotient.
\text{Quotient: }2679 \text{Reminder: }8
Since 8 is less than 168, stop the division. The reminder is 8. The topmost line 002679 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2679.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}