Evaluate
3
Factor
3
Share
Copied to clipboard
\begin{array}{l}\phantom{1500)}\phantom{1}\\1500\overline{)4500}\\\end{array}
Use the 1^{st} digit 4 from dividend 4500
\begin{array}{l}\phantom{1500)}0\phantom{2}\\1500\overline{)4500}\\\end{array}
Since 4 is less than 1500, use the next digit 5 from dividend 4500 and add 0 to the quotient
\begin{array}{l}\phantom{1500)}0\phantom{3}\\1500\overline{)4500}\\\end{array}
Use the 2^{nd} digit 5 from dividend 4500
\begin{array}{l}\phantom{1500)}00\phantom{4}\\1500\overline{)4500}\\\end{array}
Since 45 is less than 1500, use the next digit 0 from dividend 4500 and add 0 to the quotient
\begin{array}{l}\phantom{1500)}00\phantom{5}\\1500\overline{)4500}\\\end{array}
Use the 3^{rd} digit 0 from dividend 4500
\begin{array}{l}\phantom{1500)}000\phantom{6}\\1500\overline{)4500}\\\end{array}
Since 450 is less than 1500, use the next digit 0 from dividend 4500 and add 0 to the quotient
\begin{array}{l}\phantom{1500)}000\phantom{7}\\1500\overline{)4500}\\\end{array}
Use the 4^{th} digit 0 from dividend 4500
\begin{array}{l}\phantom{1500)}0003\phantom{8}\\1500\overline{)4500}\\\phantom{1500)}\underline{\phantom{}4500\phantom{}}\\\phantom{1500)9999}0\\\end{array}
Find closest multiple of 1500 to 4500. We see that 3 \times 1500 = 4500 is the nearest. Now subtract 4500 from 4500 to get reminder 0. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }0
Since 0 is less than 1500, stop the division. The reminder is 0. The topmost line 0003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}