Evaluate
\frac{450}{49}\approx 9.183673469
Factor
\frac{2 \cdot 3 ^ {2} \cdot 5 ^ {2}}{7 ^ {2}} = 9\frac{9}{49} = 9.183673469387756
Share
Copied to clipboard
\begin{array}{l}\phantom{49)}\phantom{1}\\49\overline{)450}\\\end{array}
Use the 1^{st} digit 4 from dividend 450
\begin{array}{l}\phantom{49)}0\phantom{2}\\49\overline{)450}\\\end{array}
Since 4 is less than 49, use the next digit 5 from dividend 450 and add 0 to the quotient
\begin{array}{l}\phantom{49)}0\phantom{3}\\49\overline{)450}\\\end{array}
Use the 2^{nd} digit 5 from dividend 450
\begin{array}{l}\phantom{49)}00\phantom{4}\\49\overline{)450}\\\end{array}
Since 45 is less than 49, use the next digit 0 from dividend 450 and add 0 to the quotient
\begin{array}{l}\phantom{49)}00\phantom{5}\\49\overline{)450}\\\end{array}
Use the 3^{rd} digit 0 from dividend 450
\begin{array}{l}\phantom{49)}009\phantom{6}\\49\overline{)450}\\\phantom{49)}\underline{\phantom{}441\phantom{}}\\\phantom{49)99}9\\\end{array}
Find closest multiple of 49 to 450. We see that 9 \times 49 = 441 is the nearest. Now subtract 441 from 450 to get reminder 9. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }9
Since 9 is less than 49, stop the division. The reminder is 9. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}