Evaluate
25
Factor
5^{2}
Share
Copied to clipboard
\begin{array}{l}\phantom{18)}\phantom{1}\\18\overline{)450}\\\end{array}
Use the 1^{st} digit 4 from dividend 450
\begin{array}{l}\phantom{18)}0\phantom{2}\\18\overline{)450}\\\end{array}
Since 4 is less than 18, use the next digit 5 from dividend 450 and add 0 to the quotient
\begin{array}{l}\phantom{18)}0\phantom{3}\\18\overline{)450}\\\end{array}
Use the 2^{nd} digit 5 from dividend 450
\begin{array}{l}\phantom{18)}02\phantom{4}\\18\overline{)450}\\\phantom{18)}\underline{\phantom{}36\phantom{9}}\\\phantom{18)9}9\\\end{array}
Find closest multiple of 18 to 45. We see that 2 \times 18 = 36 is the nearest. Now subtract 36 from 45 to get reminder 9. Add 2 to quotient.
\begin{array}{l}\phantom{18)}02\phantom{5}\\18\overline{)450}\\\phantom{18)}\underline{\phantom{}36\phantom{9}}\\\phantom{18)9}90\\\end{array}
Use the 3^{rd} digit 0 from dividend 450
\begin{array}{l}\phantom{18)}025\phantom{6}\\18\overline{)450}\\\phantom{18)}\underline{\phantom{}36\phantom{9}}\\\phantom{18)9}90\\\phantom{18)}\underline{\phantom{9}90\phantom{}}\\\phantom{18)999}0\\\end{array}
Find closest multiple of 18 to 90. We see that 5 \times 18 = 90 is the nearest. Now subtract 90 from 90 to get reminder 0. Add 5 to quotient.
\text{Quotient: }25 \text{Reminder: }0
Since 0 is less than 18, stop the division. The reminder is 0. The topmost line 025 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}