Evaluate
\frac{225}{7}\approx 32.142857143
Factor
\frac{3 ^ {2} \cdot 5 ^ {2}}{7} = 32\frac{1}{7} = 32.142857142857146
Share
Copied to clipboard
\begin{array}{l}\phantom{14)}\phantom{1}\\14\overline{)450}\\\end{array}
Use the 1^{st} digit 4 from dividend 450
\begin{array}{l}\phantom{14)}0\phantom{2}\\14\overline{)450}\\\end{array}
Since 4 is less than 14, use the next digit 5 from dividend 450 and add 0 to the quotient
\begin{array}{l}\phantom{14)}0\phantom{3}\\14\overline{)450}\\\end{array}
Use the 2^{nd} digit 5 from dividend 450
\begin{array}{l}\phantom{14)}03\phantom{4}\\14\overline{)450}\\\phantom{14)}\underline{\phantom{}42\phantom{9}}\\\phantom{14)9}3\\\end{array}
Find closest multiple of 14 to 45. We see that 3 \times 14 = 42 is the nearest. Now subtract 42 from 45 to get reminder 3. Add 3 to quotient.
\begin{array}{l}\phantom{14)}03\phantom{5}\\14\overline{)450}\\\phantom{14)}\underline{\phantom{}42\phantom{9}}\\\phantom{14)9}30\\\end{array}
Use the 3^{rd} digit 0 from dividend 450
\begin{array}{l}\phantom{14)}032\phantom{6}\\14\overline{)450}\\\phantom{14)}\underline{\phantom{}42\phantom{9}}\\\phantom{14)9}30\\\phantom{14)}\underline{\phantom{9}28\phantom{}}\\\phantom{14)99}2\\\end{array}
Find closest multiple of 14 to 30. We see that 2 \times 14 = 28 is the nearest. Now subtract 28 from 30 to get reminder 2. Add 2 to quotient.
\text{Quotient: }32 \text{Reminder: }2
Since 2 is less than 14, stop the division. The reminder is 2. The topmost line 032 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 32.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}