45-(( \frac{ 75-80 }{ 50 } \times 5)
Evaluate
\frac{91}{2}=45.5
Factor
\frac{7 \cdot 13}{2} = 45\frac{1}{2} = 45.5
Share
Copied to clipboard
45-\frac{-5}{50}\times 5
Subtract 80 from 75 to get -5.
45-\left(-\frac{1}{10}\times 5\right)
Reduce the fraction \frac{-5}{50} to lowest terms by extracting and canceling out 5.
45-\frac{-5}{10}
Express -\frac{1}{10}\times 5 as a single fraction.
45-\left(-\frac{1}{2}\right)
Reduce the fraction \frac{-5}{10} to lowest terms by extracting and canceling out 5.
45+\frac{1}{2}
The opposite of -\frac{1}{2} is \frac{1}{2}.
\frac{90}{2}+\frac{1}{2}
Convert 45 to fraction \frac{90}{2}.
\frac{90+1}{2}
Since \frac{90}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{91}{2}
Add 90 and 1 to get 91.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}