Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

45+12\times \frac{5}{69+3\sqrt{6}}
Factor 54=3^{2}\times 6. Rewrite the square root of the product \sqrt{3^{2}\times 6} as the product of square roots \sqrt{3^{2}}\sqrt{6}. Take the square root of 3^{2}.
45+12\times \frac{5\left(69-3\sqrt{6}\right)}{\left(69+3\sqrt{6}\right)\left(69-3\sqrt{6}\right)}
Rationalize the denominator of \frac{5}{69+3\sqrt{6}} by multiplying numerator and denominator by 69-3\sqrt{6}.
45+12\times \frac{5\left(69-3\sqrt{6}\right)}{69^{2}-\left(3\sqrt{6}\right)^{2}}
Consider \left(69+3\sqrt{6}\right)\left(69-3\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
45+12\times \frac{5\left(69-3\sqrt{6}\right)}{4761-\left(3\sqrt{6}\right)^{2}}
Calculate 69 to the power of 2 and get 4761.
45+12\times \frac{5\left(69-3\sqrt{6}\right)}{4761-3^{2}\left(\sqrt{6}\right)^{2}}
Expand \left(3\sqrt{6}\right)^{2}.
45+12\times \frac{5\left(69-3\sqrt{6}\right)}{4761-9\left(\sqrt{6}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
45+12\times \frac{5\left(69-3\sqrt{6}\right)}{4761-9\times 6}
The square of \sqrt{6} is 6.
45+12\times \frac{5\left(69-3\sqrt{6}\right)}{4761-54}
Multiply 9 and 6 to get 54.
45+12\times \frac{5\left(69-3\sqrt{6}\right)}{4707}
Subtract 54 from 4761 to get 4707.
45+\frac{12\times 5\left(69-3\sqrt{6}\right)}{4707}
Express 12\times \frac{5\left(69-3\sqrt{6}\right)}{4707} as a single fraction.
\frac{45\times 4707}{4707}+\frac{12\times 5\left(69-3\sqrt{6}\right)}{4707}
To add or subtract expressions, expand them to make their denominators the same. Multiply 45 times \frac{4707}{4707}.
\frac{45\times 4707+12\times 5\left(69-3\sqrt{6}\right)}{4707}
Since \frac{45\times 4707}{4707} and \frac{12\times 5\left(69-3\sqrt{6}\right)}{4707} have the same denominator, add them by adding their numerators.
\frac{211815+4140-180\sqrt{6}}{4707}
Do the multiplications in 45\times 4707+12\times 5\left(69-3\sqrt{6}\right).
\frac{215955-180\sqrt{6}}{4707}
Do the calculations in 211815+4140-180\sqrt{6}.