Evaluate
\frac{10\sqrt{6}}{207}+45\approx 45.118332838
Factor
\frac{5 {(2 \sqrt{6} + 1863)}}{207} = 45.118332837815615
Share
Copied to clipboard
45+12\times \frac{5}{69\times 3\sqrt{6}}
Factor 54=3^{2}\times 6. Rewrite the square root of the product \sqrt{3^{2}\times 6} as the product of square roots \sqrt{3^{2}}\sqrt{6}. Take the square root of 3^{2}.
45+12\times \frac{5}{207\sqrt{6}}
Multiply 69 and 3 to get 207.
45+12\times \frac{5\sqrt{6}}{207\left(\sqrt{6}\right)^{2}}
Rationalize the denominator of \frac{5}{207\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
45+12\times \frac{5\sqrt{6}}{207\times 6}
The square of \sqrt{6} is 6.
45+12\times \frac{5\sqrt{6}}{1242}
Multiply 207 and 6 to get 1242.
45+\frac{12\times 5\sqrt{6}}{1242}
Express 12\times \frac{5\sqrt{6}}{1242} as a single fraction.
\frac{45\times 1242}{1242}+\frac{12\times 5\sqrt{6}}{1242}
To add or subtract expressions, expand them to make their denominators the same. Multiply 45 times \frac{1242}{1242}.
\frac{45\times 1242+12\times 5\sqrt{6}}{1242}
Since \frac{45\times 1242}{1242} and \frac{12\times 5\sqrt{6}}{1242} have the same denominator, add them by adding their numerators.
\frac{55890+60\sqrt{6}}{1242}
Do the multiplications in 45\times 1242+12\times 5\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}