Solve for k
k=-\frac{3}{5-2z}
z\neq \frac{5}{2}
Solve for z
z=\frac{5}{2}+\frac{3}{2k}
k\neq 0
Share
Copied to clipboard
45k+27-18kz=0
Subtract 18kz from both sides.
45k-18kz=-27
Subtract 27 from both sides. Anything subtracted from zero gives its negation.
\left(45-18z\right)k=-27
Combine all terms containing k.
\frac{\left(45-18z\right)k}{45-18z}=-\frac{27}{45-18z}
Divide both sides by 45-18z.
k=-\frac{27}{45-18z}
Dividing by 45-18z undoes the multiplication by 45-18z.
k=-\frac{3}{5-2z}
Divide -27 by 45-18z.
18kz=45k+27
Swap sides so that all variable terms are on the left hand side.
\frac{18kz}{18k}=\frac{45k+27}{18k}
Divide both sides by 18k.
z=\frac{45k+27}{18k}
Dividing by 18k undoes the multiplication by 18k.
z=\frac{5}{2}+\frac{3}{2k}
Divide 45k+27 by 18k.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}