Solve for c
c=\frac{8d-11}{45}
Solve for d
d=\frac{45c+11}{8}
Share
Copied to clipboard
45c=-11+8d
Add 8d to both sides.
45c=8d-11
The equation is in standard form.
\frac{45c}{45}=\frac{8d-11}{45}
Divide both sides by 45.
c=\frac{8d-11}{45}
Dividing by 45 undoes the multiplication by 45.
-8d=-11-45c
Subtract 45c from both sides.
-8d=-45c-11
The equation is in standard form.
\frac{-8d}{-8}=\frac{-45c-11}{-8}
Divide both sides by -8.
d=\frac{-45c-11}{-8}
Dividing by -8 undoes the multiplication by -8.
d=\frac{45c+11}{8}
Divide -11-45c by -8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}