Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\times 45-xx=5
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x\times 45-x^{2}=5
Multiply x and x to get x^{2}.
x\times 45-x^{2}-5=0
Subtract 5 from both sides.
-x^{2}+45x-5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-45±\sqrt{45^{2}-4\left(-1\right)\left(-5\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 45 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-45±\sqrt{2025-4\left(-1\right)\left(-5\right)}}{2\left(-1\right)}
Square 45.
x=\frac{-45±\sqrt{2025+4\left(-5\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-45±\sqrt{2025-20}}{2\left(-1\right)}
Multiply 4 times -5.
x=\frac{-45±\sqrt{2005}}{2\left(-1\right)}
Add 2025 to -20.
x=\frac{-45±\sqrt{2005}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{2005}-45}{-2}
Now solve the equation x=\frac{-45±\sqrt{2005}}{-2} when ± is plus. Add -45 to \sqrt{2005}.
x=\frac{45-\sqrt{2005}}{2}
Divide -45+\sqrt{2005} by -2.
x=\frac{-\sqrt{2005}-45}{-2}
Now solve the equation x=\frac{-45±\sqrt{2005}}{-2} when ± is minus. Subtract \sqrt{2005} from -45.
x=\frac{\sqrt{2005}+45}{2}
Divide -45-\sqrt{2005} by -2.
x=\frac{45-\sqrt{2005}}{2} x=\frac{\sqrt{2005}+45}{2}
The equation is now solved.
x\times 45-xx=5
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x\times 45-x^{2}=5
Multiply x and x to get x^{2}.
-x^{2}+45x=5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+45x}{-1}=\frac{5}{-1}
Divide both sides by -1.
x^{2}+\frac{45}{-1}x=\frac{5}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-45x=\frac{5}{-1}
Divide 45 by -1.
x^{2}-45x=-5
Divide 5 by -1.
x^{2}-45x+\left(-\frac{45}{2}\right)^{2}=-5+\left(-\frac{45}{2}\right)^{2}
Divide -45, the coefficient of the x term, by 2 to get -\frac{45}{2}. Then add the square of -\frac{45}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-45x+\frac{2025}{4}=-5+\frac{2025}{4}
Square -\frac{45}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-45x+\frac{2025}{4}=\frac{2005}{4}
Add -5 to \frac{2025}{4}.
\left(x-\frac{45}{2}\right)^{2}=\frac{2005}{4}
Factor x^{2}-45x+\frac{2025}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{45}{2}\right)^{2}}=\sqrt{\frac{2005}{4}}
Take the square root of both sides of the equation.
x-\frac{45}{2}=\frac{\sqrt{2005}}{2} x-\frac{45}{2}=-\frac{\sqrt{2005}}{2}
Simplify.
x=\frac{\sqrt{2005}+45}{2} x=\frac{45-\sqrt{2005}}{2}
Add \frac{45}{2} to both sides of the equation.