Solve for a
a=-5\sqrt{d^{2}+30d+450}+45
Solve for d
d=\frac{\sqrt{\left(a-120\right)\left(a+30\right)}-75}{5}
d=\frac{-\sqrt{\left(a-120\right)\left(a+30\right)}-75}{5}\text{, }a\leq -30
Share
Copied to clipboard
45-a=5\sqrt{225+d^{2}+30d+225}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(d+15\right)^{2}.
45-a=5\sqrt{450+d^{2}+30d}
Add 225 and 225 to get 450.
-a=5\sqrt{450+d^{2}+30d}-45
Subtract 45 from both sides.
-a=5\sqrt{d^{2}+30d+450}-45
The equation is in standard form.
\frac{-a}{-1}=\frac{5\sqrt{d^{2}+30d+450}-45}{-1}
Divide both sides by -1.
a=\frac{5\sqrt{d^{2}+30d+450}-45}{-1}
Dividing by -1 undoes the multiplication by -1.
a=-5\sqrt{d^{2}+30d+450}+45
Divide 5\sqrt{450+d^{2}+30d}-45 by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}