Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

45x^{2}+27x+32=15
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
45x^{2}+27x+32-15=15-15
Subtract 15 from both sides of the equation.
45x^{2}+27x+32-15=0
Subtracting 15 from itself leaves 0.
45x^{2}+27x+17=0
Subtract 15 from 32.
x=\frac{-27±\sqrt{27^{2}-4\times 45\times 17}}{2\times 45}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 45 for a, 27 for b, and 17 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-27±\sqrt{729-4\times 45\times 17}}{2\times 45}
Square 27.
x=\frac{-27±\sqrt{729-180\times 17}}{2\times 45}
Multiply -4 times 45.
x=\frac{-27±\sqrt{729-3060}}{2\times 45}
Multiply -180 times 17.
x=\frac{-27±\sqrt{-2331}}{2\times 45}
Add 729 to -3060.
x=\frac{-27±3\sqrt{259}i}{2\times 45}
Take the square root of -2331.
x=\frac{-27±3\sqrt{259}i}{90}
Multiply 2 times 45.
x=\frac{-27+3\sqrt{259}i}{90}
Now solve the equation x=\frac{-27±3\sqrt{259}i}{90} when ± is plus. Add -27 to 3i\sqrt{259}.
x=\frac{\sqrt{259}i}{30}-\frac{3}{10}
Divide -27+3i\sqrt{259} by 90.
x=\frac{-3\sqrt{259}i-27}{90}
Now solve the equation x=\frac{-27±3\sqrt{259}i}{90} when ± is minus. Subtract 3i\sqrt{259} from -27.
x=-\frac{\sqrt{259}i}{30}-\frac{3}{10}
Divide -27-3i\sqrt{259} by 90.
x=\frac{\sqrt{259}i}{30}-\frac{3}{10} x=-\frac{\sqrt{259}i}{30}-\frac{3}{10}
The equation is now solved.
45x^{2}+27x+32=15
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
45x^{2}+27x+32-32=15-32
Subtract 32 from both sides of the equation.
45x^{2}+27x=15-32
Subtracting 32 from itself leaves 0.
45x^{2}+27x=-17
Subtract 32 from 15.
\frac{45x^{2}+27x}{45}=-\frac{17}{45}
Divide both sides by 45.
x^{2}+\frac{27}{45}x=-\frac{17}{45}
Dividing by 45 undoes the multiplication by 45.
x^{2}+\frac{3}{5}x=-\frac{17}{45}
Reduce the fraction \frac{27}{45} to lowest terms by extracting and canceling out 9.
x^{2}+\frac{3}{5}x+\left(\frac{3}{10}\right)^{2}=-\frac{17}{45}+\left(\frac{3}{10}\right)^{2}
Divide \frac{3}{5}, the coefficient of the x term, by 2 to get \frac{3}{10}. Then add the square of \frac{3}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{5}x+\frac{9}{100}=-\frac{17}{45}+\frac{9}{100}
Square \frac{3}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{5}x+\frac{9}{100}=-\frac{259}{900}
Add -\frac{17}{45} to \frac{9}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{10}\right)^{2}=-\frac{259}{900}
Factor x^{2}+\frac{3}{5}x+\frac{9}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{10}\right)^{2}}=\sqrt{-\frac{259}{900}}
Take the square root of both sides of the equation.
x+\frac{3}{10}=\frac{\sqrt{259}i}{30} x+\frac{3}{10}=-\frac{\sqrt{259}i}{30}
Simplify.
x=\frac{\sqrt{259}i}{30}-\frac{3}{10} x=-\frac{\sqrt{259}i}{30}-\frac{3}{10}
Subtract \frac{3}{10} from both sides of the equation.