Factor
5\left(9x-4\right)\left(x+6\right)
Evaluate
5\left(9x-4\right)\left(x+6\right)
Graph
Share
Copied to clipboard
5\left(9x^{2}+50x-24\right)
Factor out 5.
a+b=50 ab=9\left(-24\right)=-216
Consider 9x^{2}+50x-24. Factor the expression by grouping. First, the expression needs to be rewritten as 9x^{2}+ax+bx-24. To find a and b, set up a system to be solved.
-1,216 -2,108 -3,72 -4,54 -6,36 -8,27 -9,24 -12,18
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -216.
-1+216=215 -2+108=106 -3+72=69 -4+54=50 -6+36=30 -8+27=19 -9+24=15 -12+18=6
Calculate the sum for each pair.
a=-4 b=54
The solution is the pair that gives sum 50.
\left(9x^{2}-4x\right)+\left(54x-24\right)
Rewrite 9x^{2}+50x-24 as \left(9x^{2}-4x\right)+\left(54x-24\right).
x\left(9x-4\right)+6\left(9x-4\right)
Factor out x in the first and 6 in the second group.
\left(9x-4\right)\left(x+6\right)
Factor out common term 9x-4 by using distributive property.
5\left(9x-4\right)\left(x+6\right)
Rewrite the complete factored expression.
45x^{2}+250x-120=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-250±\sqrt{250^{2}-4\times 45\left(-120\right)}}{2\times 45}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-250±\sqrt{62500-4\times 45\left(-120\right)}}{2\times 45}
Square 250.
x=\frac{-250±\sqrt{62500-180\left(-120\right)}}{2\times 45}
Multiply -4 times 45.
x=\frac{-250±\sqrt{62500+21600}}{2\times 45}
Multiply -180 times -120.
x=\frac{-250±\sqrt{84100}}{2\times 45}
Add 62500 to 21600.
x=\frac{-250±290}{2\times 45}
Take the square root of 84100.
x=\frac{-250±290}{90}
Multiply 2 times 45.
x=\frac{40}{90}
Now solve the equation x=\frac{-250±290}{90} when ± is plus. Add -250 to 290.
x=\frac{4}{9}
Reduce the fraction \frac{40}{90} to lowest terms by extracting and canceling out 10.
x=-\frac{540}{90}
Now solve the equation x=\frac{-250±290}{90} when ± is minus. Subtract 290 from -250.
x=-6
Divide -540 by 90.
45x^{2}+250x-120=45\left(x-\frac{4}{9}\right)\left(x-\left(-6\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{4}{9} for x_{1} and -6 for x_{2}.
45x^{2}+250x-120=45\left(x-\frac{4}{9}\right)\left(x+6\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
45x^{2}+250x-120=45\times \frac{9x-4}{9}\left(x+6\right)
Subtract \frac{4}{9} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
45x^{2}+250x-120=5\left(9x-4\right)\left(x+6\right)
Cancel out 9, the greatest common factor in 45 and 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}