Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

45a^{2}-8a-185=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 45\left(-185\right)}}{2\times 45}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 45 for a, -8 for b, and -185 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-8\right)±\sqrt{64-4\times 45\left(-185\right)}}{2\times 45}
Square -8.
a=\frac{-\left(-8\right)±\sqrt{64-180\left(-185\right)}}{2\times 45}
Multiply -4 times 45.
a=\frac{-\left(-8\right)±\sqrt{64+33300}}{2\times 45}
Multiply -180 times -185.
a=\frac{-\left(-8\right)±\sqrt{33364}}{2\times 45}
Add 64 to 33300.
a=\frac{-\left(-8\right)±2\sqrt{8341}}{2\times 45}
Take the square root of 33364.
a=\frac{8±2\sqrt{8341}}{2\times 45}
The opposite of -8 is 8.
a=\frac{8±2\sqrt{8341}}{90}
Multiply 2 times 45.
a=\frac{2\sqrt{8341}+8}{90}
Now solve the equation a=\frac{8±2\sqrt{8341}}{90} when ± is plus. Add 8 to 2\sqrt{8341}.
a=\frac{\sqrt{8341}+4}{45}
Divide 8+2\sqrt{8341} by 90.
a=\frac{8-2\sqrt{8341}}{90}
Now solve the equation a=\frac{8±2\sqrt{8341}}{90} when ± is minus. Subtract 2\sqrt{8341} from 8.
a=\frac{4-\sqrt{8341}}{45}
Divide 8-2\sqrt{8341} by 90.
a=\frac{\sqrt{8341}+4}{45} a=\frac{4-\sqrt{8341}}{45}
The equation is now solved.
45a^{2}-8a-185=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
45a^{2}-8a-185-\left(-185\right)=-\left(-185\right)
Add 185 to both sides of the equation.
45a^{2}-8a=-\left(-185\right)
Subtracting -185 from itself leaves 0.
45a^{2}-8a=185
Subtract -185 from 0.
\frac{45a^{2}-8a}{45}=\frac{185}{45}
Divide both sides by 45.
a^{2}-\frac{8}{45}a=\frac{185}{45}
Dividing by 45 undoes the multiplication by 45.
a^{2}-\frac{8}{45}a=\frac{37}{9}
Reduce the fraction \frac{185}{45} to lowest terms by extracting and canceling out 5.
a^{2}-\frac{8}{45}a+\left(-\frac{4}{45}\right)^{2}=\frac{37}{9}+\left(-\frac{4}{45}\right)^{2}
Divide -\frac{8}{45}, the coefficient of the x term, by 2 to get -\frac{4}{45}. Then add the square of -\frac{4}{45} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{8}{45}a+\frac{16}{2025}=\frac{37}{9}+\frac{16}{2025}
Square -\frac{4}{45} by squaring both the numerator and the denominator of the fraction.
a^{2}-\frac{8}{45}a+\frac{16}{2025}=\frac{8341}{2025}
Add \frac{37}{9} to \frac{16}{2025} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a-\frac{4}{45}\right)^{2}=\frac{8341}{2025}
Factor a^{2}-\frac{8}{45}a+\frac{16}{2025}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{4}{45}\right)^{2}}=\sqrt{\frac{8341}{2025}}
Take the square root of both sides of the equation.
a-\frac{4}{45}=\frac{\sqrt{8341}}{45} a-\frac{4}{45}=-\frac{\sqrt{8341}}{45}
Simplify.
a=\frac{\sqrt{8341}+4}{45} a=\frac{4-\sqrt{8341}}{45}
Add \frac{4}{45} to both sides of the equation.