45 \times 1.5 \% +45 \times 0.03 \% 50 \% x=x-40
Solve for x
x = \frac{162700}{3973} = 40\frac{3780}{3973} \approx 40.951422099
Graph
Share
Copied to clipboard
45\times \frac{15}{1000}+45\times \frac{0.03}{100}\times \frac{50}{100}x=x-40
Expand \frac{1.5}{100} by multiplying both numerator and the denominator by 10.
45\times \frac{3}{200}+45\times \frac{0.03}{100}\times \frac{50}{100}x=x-40
Reduce the fraction \frac{15}{1000} to lowest terms by extracting and canceling out 5.
\frac{45\times 3}{200}+45\times \frac{0.03}{100}\times \frac{50}{100}x=x-40
Express 45\times \frac{3}{200} as a single fraction.
\frac{135}{200}+45\times \frac{0.03}{100}\times \frac{50}{100}x=x-40
Multiply 45 and 3 to get 135.
\frac{27}{40}+45\times \frac{0.03}{100}\times \frac{50}{100}x=x-40
Reduce the fraction \frac{135}{200} to lowest terms by extracting and canceling out 5.
\frac{27}{40}+45\times \frac{3}{10000}\times \frac{50}{100}x=x-40
Expand \frac{0.03}{100} by multiplying both numerator and the denominator by 100.
\frac{27}{40}+\frac{45\times 3}{10000}\times \frac{50}{100}x=x-40
Express 45\times \frac{3}{10000} as a single fraction.
\frac{27}{40}+\frac{135}{10000}\times \frac{50}{100}x=x-40
Multiply 45 and 3 to get 135.
\frac{27}{40}+\frac{27}{2000}\times \frac{50}{100}x=x-40
Reduce the fraction \frac{135}{10000} to lowest terms by extracting and canceling out 5.
\frac{27}{40}+\frac{27}{2000}\times \frac{1}{2}x=x-40
Reduce the fraction \frac{50}{100} to lowest terms by extracting and canceling out 50.
\frac{27}{40}+\frac{27\times 1}{2000\times 2}x=x-40
Multiply \frac{27}{2000} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{27}{40}+\frac{27}{4000}x=x-40
Do the multiplications in the fraction \frac{27\times 1}{2000\times 2}.
\frac{27}{40}+\frac{27}{4000}x-x=-40
Subtract x from both sides.
\frac{27}{40}-\frac{3973}{4000}x=-40
Combine \frac{27}{4000}x and -x to get -\frac{3973}{4000}x.
-\frac{3973}{4000}x=-40-\frac{27}{40}
Subtract \frac{27}{40} from both sides.
-\frac{3973}{4000}x=-\frac{1600}{40}-\frac{27}{40}
Convert -40 to fraction -\frac{1600}{40}.
-\frac{3973}{4000}x=\frac{-1600-27}{40}
Since -\frac{1600}{40} and \frac{27}{40} have the same denominator, subtract them by subtracting their numerators.
-\frac{3973}{4000}x=-\frac{1627}{40}
Subtract 27 from -1600 to get -1627.
x=-\frac{1627}{40}\left(-\frac{4000}{3973}\right)
Multiply both sides by -\frac{4000}{3973}, the reciprocal of -\frac{3973}{4000}.
x=\frac{-1627\left(-4000\right)}{40\times 3973}
Multiply -\frac{1627}{40} times -\frac{4000}{3973} by multiplying numerator times numerator and denominator times denominator.
x=\frac{6508000}{158920}
Do the multiplications in the fraction \frac{-1627\left(-4000\right)}{40\times 3973}.
x=\frac{162700}{3973}
Reduce the fraction \frac{6508000}{158920} to lowest terms by extracting and canceling out 40.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}