Evaluate
\frac{45}{19}\approx 2.368421053
Factor
\frac{3 ^ {2} \cdot 5}{19} = 2\frac{7}{19} = 2.3684210526315788
Share
Copied to clipboard
\begin{array}{l}\phantom{19)}\phantom{1}\\19\overline{)45}\\\end{array}
Use the 1^{st} digit 4 from dividend 45
\begin{array}{l}\phantom{19)}0\phantom{2}\\19\overline{)45}\\\end{array}
Since 4 is less than 19, use the next digit 5 from dividend 45 and add 0 to the quotient
\begin{array}{l}\phantom{19)}0\phantom{3}\\19\overline{)45}\\\end{array}
Use the 2^{nd} digit 5 from dividend 45
\begin{array}{l}\phantom{19)}02\phantom{4}\\19\overline{)45}\\\phantom{19)}\underline{\phantom{}38\phantom{}}\\\phantom{19)9}7\\\end{array}
Find closest multiple of 19 to 45. We see that 2 \times 19 = 38 is the nearest. Now subtract 38 from 45 to get reminder 7. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }7
Since 7 is less than 19, stop the division. The reminder is 7. The topmost line 02 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}