Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

45=\frac{45}{2}+x^{2}
Reduce the fraction \frac{90}{4} to lowest terms by extracting and canceling out 2.
\frac{45}{2}+x^{2}=45
Swap sides so that all variable terms are on the left hand side.
x^{2}=45-\frac{45}{2}
Subtract \frac{45}{2} from both sides.
x^{2}=\frac{45}{2}
Subtract \frac{45}{2} from 45 to get \frac{45}{2}.
x=\frac{3\sqrt{10}}{2} x=-\frac{3\sqrt{10}}{2}
Take the square root of both sides of the equation.
45=\frac{45}{2}+x^{2}
Reduce the fraction \frac{90}{4} to lowest terms by extracting and canceling out 2.
\frac{45}{2}+x^{2}=45
Swap sides so that all variable terms are on the left hand side.
\frac{45}{2}+x^{2}-45=0
Subtract 45 from both sides.
-\frac{45}{2}+x^{2}=0
Subtract 45 from \frac{45}{2} to get -\frac{45}{2}.
x^{2}-\frac{45}{2}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{45}{2}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{45}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{45}{2}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{90}}{2}
Multiply -4 times -\frac{45}{2}.
x=\frac{0±3\sqrt{10}}{2}
Take the square root of 90.
x=\frac{3\sqrt{10}}{2}
Now solve the equation x=\frac{0±3\sqrt{10}}{2} when ± is plus.
x=-\frac{3\sqrt{10}}{2}
Now solve the equation x=\frac{0±3\sqrt{10}}{2} when ± is minus.
x=\frac{3\sqrt{10}}{2} x=-\frac{3\sqrt{10}}{2}
The equation is now solved.