Evaluate
\frac{448}{365}\approx 1.22739726
Factor
\frac{2 ^ {6} \cdot 7}{5 \cdot 73} = 1\frac{83}{365} = 1.2273972602739727
Share
Copied to clipboard
\begin{array}{l}\phantom{365)}\phantom{1}\\365\overline{)448}\\\end{array}
Use the 1^{st} digit 4 from dividend 448
\begin{array}{l}\phantom{365)}0\phantom{2}\\365\overline{)448}\\\end{array}
Since 4 is less than 365, use the next digit 4 from dividend 448 and add 0 to the quotient
\begin{array}{l}\phantom{365)}0\phantom{3}\\365\overline{)448}\\\end{array}
Use the 2^{nd} digit 4 from dividend 448
\begin{array}{l}\phantom{365)}00\phantom{4}\\365\overline{)448}\\\end{array}
Since 44 is less than 365, use the next digit 8 from dividend 448 and add 0 to the quotient
\begin{array}{l}\phantom{365)}00\phantom{5}\\365\overline{)448}\\\end{array}
Use the 3^{rd} digit 8 from dividend 448
\begin{array}{l}\phantom{365)}001\phantom{6}\\365\overline{)448}\\\phantom{365)}\underline{\phantom{}365\phantom{}}\\\phantom{365)9}83\\\end{array}
Find closest multiple of 365 to 448. We see that 1 \times 365 = 365 is the nearest. Now subtract 365 from 448 to get reminder 83. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }83
Since 83 is less than 365, stop the division. The reminder is 83. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}