Evaluate
\frac{7}{3}\approx 2.333333333
Factor
\frac{7}{3} = 2\frac{1}{3} = 2.3333333333333335
Share
Copied to clipboard
\begin{array}{l}\phantom{192)}\phantom{1}\\192\overline{)448}\\\end{array}
Use the 1^{st} digit 4 from dividend 448
\begin{array}{l}\phantom{192)}0\phantom{2}\\192\overline{)448}\\\end{array}
Since 4 is less than 192, use the next digit 4 from dividend 448 and add 0 to the quotient
\begin{array}{l}\phantom{192)}0\phantom{3}\\192\overline{)448}\\\end{array}
Use the 2^{nd} digit 4 from dividend 448
\begin{array}{l}\phantom{192)}00\phantom{4}\\192\overline{)448}\\\end{array}
Since 44 is less than 192, use the next digit 8 from dividend 448 and add 0 to the quotient
\begin{array}{l}\phantom{192)}00\phantom{5}\\192\overline{)448}\\\end{array}
Use the 3^{rd} digit 8 from dividend 448
\begin{array}{l}\phantom{192)}002\phantom{6}\\192\overline{)448}\\\phantom{192)}\underline{\phantom{}384\phantom{}}\\\phantom{192)9}64\\\end{array}
Find closest multiple of 192 to 448. We see that 2 \times 192 = 384 is the nearest. Now subtract 384 from 448 to get reminder 64. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }64
Since 64 is less than 192, stop the division. The reminder is 64. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}