Evaluate
\frac{31845}{14}\approx 2274.642857143
Factor
\frac{3 \cdot 5 \cdot 11 \cdot 193}{2 \cdot 7} = 2274\frac{9}{14} = 2274.6428571428573
Share
Copied to clipboard
\begin{array}{l}\phantom{196)}\phantom{1}\\196\overline{)445830}\\\end{array}
Use the 1^{st} digit 4 from dividend 445830
\begin{array}{l}\phantom{196)}0\phantom{2}\\196\overline{)445830}\\\end{array}
Since 4 is less than 196, use the next digit 4 from dividend 445830 and add 0 to the quotient
\begin{array}{l}\phantom{196)}0\phantom{3}\\196\overline{)445830}\\\end{array}
Use the 2^{nd} digit 4 from dividend 445830
\begin{array}{l}\phantom{196)}00\phantom{4}\\196\overline{)445830}\\\end{array}
Since 44 is less than 196, use the next digit 5 from dividend 445830 and add 0 to the quotient
\begin{array}{l}\phantom{196)}00\phantom{5}\\196\overline{)445830}\\\end{array}
Use the 3^{rd} digit 5 from dividend 445830
\begin{array}{l}\phantom{196)}002\phantom{6}\\196\overline{)445830}\\\phantom{196)}\underline{\phantom{}392\phantom{999}}\\\phantom{196)9}53\\\end{array}
Find closest multiple of 196 to 445. We see that 2 \times 196 = 392 is the nearest. Now subtract 392 from 445 to get reminder 53. Add 2 to quotient.
\begin{array}{l}\phantom{196)}002\phantom{7}\\196\overline{)445830}\\\phantom{196)}\underline{\phantom{}392\phantom{999}}\\\phantom{196)9}538\\\end{array}
Use the 4^{th} digit 8 from dividend 445830
\begin{array}{l}\phantom{196)}0022\phantom{8}\\196\overline{)445830}\\\phantom{196)}\underline{\phantom{}392\phantom{999}}\\\phantom{196)9}538\\\phantom{196)}\underline{\phantom{9}392\phantom{99}}\\\phantom{196)9}146\\\end{array}
Find closest multiple of 196 to 538. We see that 2 \times 196 = 392 is the nearest. Now subtract 392 from 538 to get reminder 146. Add 2 to quotient.
\begin{array}{l}\phantom{196)}0022\phantom{9}\\196\overline{)445830}\\\phantom{196)}\underline{\phantom{}392\phantom{999}}\\\phantom{196)9}538\\\phantom{196)}\underline{\phantom{9}392\phantom{99}}\\\phantom{196)9}1463\\\end{array}
Use the 5^{th} digit 3 from dividend 445830
\begin{array}{l}\phantom{196)}00227\phantom{10}\\196\overline{)445830}\\\phantom{196)}\underline{\phantom{}392\phantom{999}}\\\phantom{196)9}538\\\phantom{196)}\underline{\phantom{9}392\phantom{99}}\\\phantom{196)9}1463\\\phantom{196)}\underline{\phantom{9}1372\phantom{9}}\\\phantom{196)999}91\\\end{array}
Find closest multiple of 196 to 1463. We see that 7 \times 196 = 1372 is the nearest. Now subtract 1372 from 1463 to get reminder 91. Add 7 to quotient.
\begin{array}{l}\phantom{196)}00227\phantom{11}\\196\overline{)445830}\\\phantom{196)}\underline{\phantom{}392\phantom{999}}\\\phantom{196)9}538\\\phantom{196)}\underline{\phantom{9}392\phantom{99}}\\\phantom{196)9}1463\\\phantom{196)}\underline{\phantom{9}1372\phantom{9}}\\\phantom{196)999}910\\\end{array}
Use the 6^{th} digit 0 from dividend 445830
\begin{array}{l}\phantom{196)}002274\phantom{12}\\196\overline{)445830}\\\phantom{196)}\underline{\phantom{}392\phantom{999}}\\\phantom{196)9}538\\\phantom{196)}\underline{\phantom{9}392\phantom{99}}\\\phantom{196)9}1463\\\phantom{196)}\underline{\phantom{9}1372\phantom{9}}\\\phantom{196)999}910\\\phantom{196)}\underline{\phantom{999}784\phantom{}}\\\phantom{196)999}126\\\end{array}
Find closest multiple of 196 to 910. We see that 4 \times 196 = 784 is the nearest. Now subtract 784 from 910 to get reminder 126. Add 4 to quotient.
\text{Quotient: }2274 \text{Reminder: }126
Since 126 is less than 196, stop the division. The reminder is 126. The topmost line 002274 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2274.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}