Evaluate
\frac{2222}{333}\approx 6.672672673
Factor
\frac{2 \cdot 11 \cdot 101}{3 ^ {2} \cdot 37} = 6\frac{224}{333} = 6.672672672672673
Share
Copied to clipboard
\begin{array}{l}\phantom{666)}\phantom{1}\\666\overline{)4444}\\\end{array}
Use the 1^{st} digit 4 from dividend 4444
\begin{array}{l}\phantom{666)}0\phantom{2}\\666\overline{)4444}\\\end{array}
Since 4 is less than 666, use the next digit 4 from dividend 4444 and add 0 to the quotient
\begin{array}{l}\phantom{666)}0\phantom{3}\\666\overline{)4444}\\\end{array}
Use the 2^{nd} digit 4 from dividend 4444
\begin{array}{l}\phantom{666)}00\phantom{4}\\666\overline{)4444}\\\end{array}
Since 44 is less than 666, use the next digit 4 from dividend 4444 and add 0 to the quotient
\begin{array}{l}\phantom{666)}00\phantom{5}\\666\overline{)4444}\\\end{array}
Use the 3^{rd} digit 4 from dividend 4444
\begin{array}{l}\phantom{666)}000\phantom{6}\\666\overline{)4444}\\\end{array}
Since 444 is less than 666, use the next digit 4 from dividend 4444 and add 0 to the quotient
\begin{array}{l}\phantom{666)}000\phantom{7}\\666\overline{)4444}\\\end{array}
Use the 4^{th} digit 4 from dividend 4444
\begin{array}{l}\phantom{666)}0006\phantom{8}\\666\overline{)4444}\\\phantom{666)}\underline{\phantom{}3996\phantom{}}\\\phantom{666)9}448\\\end{array}
Find closest multiple of 666 to 4444. We see that 6 \times 666 = 3996 is the nearest. Now subtract 3996 from 4444 to get reminder 448. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }448
Since 448 is less than 666, stop the division. The reminder is 448. The topmost line 0006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}