Solve for x
x=74
x=66
Graph
Share
Copied to clipboard
4420=-5\left(x^{2}-140x+4900\right)+4500
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-70\right)^{2}.
4420=-5x^{2}+700x-24500+4500
Use the distributive property to multiply -5 by x^{2}-140x+4900.
4420=-5x^{2}+700x-20000
Add -24500 and 4500 to get -20000.
-5x^{2}+700x-20000=4420
Swap sides so that all variable terms are on the left hand side.
-5x^{2}+700x-20000-4420=0
Subtract 4420 from both sides.
-5x^{2}+700x-24420=0
Subtract 4420 from -20000 to get -24420.
x=\frac{-700±\sqrt{700^{2}-4\left(-5\right)\left(-24420\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 700 for b, and -24420 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-700±\sqrt{490000-4\left(-5\right)\left(-24420\right)}}{2\left(-5\right)}
Square 700.
x=\frac{-700±\sqrt{490000+20\left(-24420\right)}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-700±\sqrt{490000-488400}}{2\left(-5\right)}
Multiply 20 times -24420.
x=\frac{-700±\sqrt{1600}}{2\left(-5\right)}
Add 490000 to -488400.
x=\frac{-700±40}{2\left(-5\right)}
Take the square root of 1600.
x=\frac{-700±40}{-10}
Multiply 2 times -5.
x=-\frac{660}{-10}
Now solve the equation x=\frac{-700±40}{-10} when ± is plus. Add -700 to 40.
x=66
Divide -660 by -10.
x=-\frac{740}{-10}
Now solve the equation x=\frac{-700±40}{-10} when ± is minus. Subtract 40 from -700.
x=74
Divide -740 by -10.
x=66 x=74
The equation is now solved.
4420=-5\left(x^{2}-140x+4900\right)+4500
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-70\right)^{2}.
4420=-5x^{2}+700x-24500+4500
Use the distributive property to multiply -5 by x^{2}-140x+4900.
4420=-5x^{2}+700x-20000
Add -24500 and 4500 to get -20000.
-5x^{2}+700x-20000=4420
Swap sides so that all variable terms are on the left hand side.
-5x^{2}+700x=4420+20000
Add 20000 to both sides.
-5x^{2}+700x=24420
Add 4420 and 20000 to get 24420.
\frac{-5x^{2}+700x}{-5}=\frac{24420}{-5}
Divide both sides by -5.
x^{2}+\frac{700}{-5}x=\frac{24420}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}-140x=\frac{24420}{-5}
Divide 700 by -5.
x^{2}-140x=-4884
Divide 24420 by -5.
x^{2}-140x+\left(-70\right)^{2}=-4884+\left(-70\right)^{2}
Divide -140, the coefficient of the x term, by 2 to get -70. Then add the square of -70 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-140x+4900=-4884+4900
Square -70.
x^{2}-140x+4900=16
Add -4884 to 4900.
\left(x-70\right)^{2}=16
Factor x^{2}-140x+4900. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-70\right)^{2}}=\sqrt{16}
Take the square root of both sides of the equation.
x-70=4 x-70=-4
Simplify.
x=74 x=66
Add 70 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}