Evaluate
-\frac{441\sqrt{3}}{4}+231\approx 40.041398466
Share
Copied to clipboard
441\left(\frac{22}{7}\times \frac{1}{6}-\frac{1}{2}\sin(60)\right)
Reduce the fraction \frac{60}{360} to lowest terms by extracting and canceling out 60.
441\left(\frac{11}{21}-\frac{1}{2}\sin(60)\right)
Multiply \frac{22}{7} and \frac{1}{6} to get \frac{11}{21}.
441\left(\frac{11}{21}-\frac{1}{2}\times \frac{\sqrt{3}}{2}\right)
Get the value of \sin(60) from trigonometric values table.
441\left(\frac{11}{21}-\frac{\sqrt{3}}{2\times 2}\right)
Multiply \frac{1}{2} times \frac{\sqrt{3}}{2} by multiplying numerator times numerator and denominator times denominator.
441\left(\frac{11}{21}-\frac{\sqrt{3}}{4}\right)
Multiply 2 and 2 to get 4.
441\left(\frac{11\times 4}{84}-\frac{21\sqrt{3}}{84}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 21 and 4 is 84. Multiply \frac{11}{21} times \frac{4}{4}. Multiply \frac{\sqrt{3}}{4} times \frac{21}{21}.
441\times \frac{11\times 4-21\sqrt{3}}{84}
Since \frac{11\times 4}{84} and \frac{21\sqrt{3}}{84} have the same denominator, subtract them by subtracting their numerators.
441\times \frac{44-21\sqrt{3}}{84}
Do the multiplications in 11\times 4-21\sqrt{3}.
\frac{441\left(44-21\sqrt{3}\right)}{84}
Express 441\times \frac{44-21\sqrt{3}}{84} as a single fraction.
\frac{19404-9261\sqrt{3}}{84}
Use the distributive property to multiply 441 by 44-21\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}