Solve for P
P = \frac{89202980794122492566142873090593446023921664000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}{7069761761045233183433735540394084617844514083813767026353333267305704540797628457396498308506049708981195800247131328363327785363509889402774806137316302329230207085674614561352520814691} = 12617\frac{3.796655014781737 \times 10^{186}}{7.069761761045234 \times 10^{186}} \approx 12617.537027292
Share
Copied to clipboard
44000=P\left(1+\frac{7}{400}\right)^{4\times 18}
Expand \frac{0.07}{4} by multiplying both numerator and the denominator by 100.
44000=P\times \left(\frac{407}{400}\right)^{4\times 18}
Add 1 and \frac{7}{400} to get \frac{407}{400}.
44000=P\times \left(\frac{407}{400}\right)^{72}
Multiply 4 and 18 to get 72.
44000=P\times \frac{77767379371497565017771090944334930796289654921951437289886665940362749948773913031361481393566546798793153802718444611996605638998608783430522867510479325621532277942420760174877728961601}{22300745198530623141535718272648361505980416000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}
Calculate \frac{407}{400} to the power of 72 and get \frac{77767379371497565017771090944334930796289654921951437289886665940362749948773913031361481393566546798793153802718444611996605638998608783430522867510479325621532277942420760174877728961601}{22300745198530623141535718272648361505980416000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}.
P\times \frac{77767379371497565017771090944334930796289654921951437289886665940362749948773913031361481393566546798793153802718444611996605638998608783430522867510479325621532277942420760174877728961601}{22300745198530623141535718272648361505980416000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}=44000
Swap sides so that all variable terms are on the left hand side.
P=44000\times \frac{22300745198530623141535718272648361505980416000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}{77767379371497565017771090944334930796289654921951437289886665940362749948773913031361481393566546798793153802718444611996605638998608783430522867510479325621532277942420760174877728961601}
Multiply both sides by \frac{22300745198530623141535718272648361505980416000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}{77767379371497565017771090944334930796289654921951437289886665940362749948773913031361481393566546798793153802718444611996605638998608783430522867510479325621532277942420760174877728961601}, the reciprocal of \frac{77767379371497565017771090944334930796289654921951437289886665940362749948773913031361481393566546798793153802718444611996605638998608783430522867510479325621532277942420760174877728961601}{22300745198530623141535718272648361505980416000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}.
P=\frac{89202980794122492566142873090593446023921664000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}{7069761761045233183433735540394084617844514083813767026353333267305704540797628457396498308506049708981195800247131328363327785363509889402774806137316302329230207085674614561352520814691}
Multiply 44000 and \frac{22300745198530623141535718272648361505980416000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}{77767379371497565017771090944334930796289654921951437289886665940362749948773913031361481393566546798793153802718444611996605638998608783430522867510479325621532277942420760174877728961601} to get \frac{89202980794122492566142873090593446023921664000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}{7069761761045233183433735540394084617844514083813767026353333267305704540797628457396498308506049708981195800247131328363327785363509889402774806137316302329230207085674614561352520814691}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}